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"Perception, then, emerges as that relatively primitive,
partly autonomous, institutionalized, ratiomorphic subsystem of cognition
which achieves prompt and richly detailed orientation habitually concerning
the vitally relevant, mostly distal aspects ot the environment on the basis
of mutually vicarious, relatively restricted and stereotyped, insufficient
evidence in uncertainty-geared interaction and compromise, seemingly
following the highest probability for smallness of error at the expense of
the highest frequency of precision.’" ----- From "Perception and the

Representative Design of Psychological Experiments,' by Egon Brunswik.

‘"That's a simplification. Perception is standing on the side-
walk, watching all the girls go by." ----- From "The New Yorker',

December 19, 1959.




PREFACE

It is only after much hesitation that the writer has reconciled him-
self to the addition of the term '"neurodynamics' to the list of such recent
linguistic artifacts as ''cybernetics', "bionics”, ""autonomics'", "biomimesis',
'"'synnoetics', '"intelectronics'', and '"'robotics". It is hoped that by selecting
a term which more clearly delimits our realm of interest and indicates its
relationship to traditiohal academic disciplines, the underlying motivation of
the perceptron program may be more successfully communicated. The term
"perceptron', originally intended as a generic name for a variety of theoretical
nerve nets, has an unfortunate tegdency to suggest a specific piece of hardware,
and it is only with difficulty that its well-meaning popularizers can be persuaded’

to suppress their natural urge to capitalize the initial "P'", On being asked,

""How is Perceptron performing today?" I am often tempted to respond, ""Very

well, thank you, and how are Neutron and Electron behaving?"

That the aims and methods cof perceptron research are in need of
clarification is apparent from the extent of the controversy within the scientific
~orrrunity since 1957, concerning the value of the perceptron concept. There
seem to have becn at least three main reasons for negative reactions to the
program. First, was the admitted lack of mathematical rigor in preliminary re-
ports. Second, was the handling of the first public announcement of the program
in 1958 by the popular press, which fell to the task with all of the exuberance and
sensge of discretion of a pack of happy bloodhounds. Such headlines as "Franken-
stein Monster Designed by Navy. Rc',o' That Thinks' (Tulsa, Oklahoma Times)
were hardly designed to inspire scientific confidence. Third, and perhaps most
significant, there has been a failure to comprehend the differ=nce in motivation
between the perceptron program and the various engineering projects concerned
with automatic pattern recognition, "artificial intelligence'", and advanced computers.

For this writer, the perceptron program is not primarily concerned with the inven-
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tion of devices for "artificial intelligence', but rather with investigating the
physical structures and neurodynamic principles which underlie "natural

' intelligence'. A perceptron is first and foremost a brain model, not an inven -
tion for pattern recognition. As a brain model, its utility is in enabling us to
determine the physical conditions for the emergence of various psychological
properties. It is by no means a '"complete" model, and we are fully aware of
tlie simplifications which have been made from biological systems; but it is,
at least, an analyzable model. The results of this approach have already been
substantial; a number of fundamental principles have been established, which
are presented in this report, and these principles may be freely applied,
wherever they prove useful, by inventors of pattern recognition machines and

artificial intelligence systems.

The purpose of this report is to set forth the principles, motivation,
and accomplishments of perceptron theory in their entirety, and to provide a
self -sufficient text for those who are interested in a serious study of neuro-
dynamics. The writer is convinced that this is as definitive a treatrﬁ.'cnt as can
reasonably be accomplished in a volume of managable size. Since this volume
attempts to present a consistent theoretical! position, however, the student
would be well advised to round out his reading with several of the alternative
approaches rcferenced in Part . Within the last year, a number of comprehen-
sive reviews of the literature have appeared, which provide convenient jumping-

off points for such a study. ™

The work reported here has been performed jointly at the Cornell
Aeronautical Laboratory in Buffalo and at Cornell University in Ithaca. Both
programs have been under the support of the Information Systems Branch of the

Office of Naval Research -- the Buffalo program since July, 1957, and the Ithaca

)

“See, for example, Minsky's article, "Steps Toward Artificial Intelligence",
Proc. I.R. E., 49, January, 1961, for an entertaining statement of the views of
the loyal opposition, which includes an excellent bibliography.
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program since September, i959. A number of other agencies have contributed
to particular aspects of the program. The Rome Air Development Center has
assisted in the development of the Mark I perceptron, and we are indebted to
the Atomic knergy Commission for making the facilities of the NYU computing

center available to us.

" rreat many individuals have participated in this work, R. D. Joseph
and H. D. 3lock, in particular, have contributed ideas, suggestions, and
criticisms to an extent which should entitle them to co-authorship of geveral
chapters of this volume., I am especially indebted to both ot t1 »n». for their
heroic performance in proofreading the mathematical exposition pr-sented here,

a task which has occupied many weeks of their time, and which has saved me from
committing many a mathematical felony. Carl Kesler, Trevor Barker, David
Feign, and Louise Hay have rendered invaluable assistance in programming the
various digital computers employed on the project, while the engineering work

on the Mark [ was carried out primarily by Charles Wightman and Francis Martin
at C.A. L. The experimental program with the Mark I was ’carried out by John
Hay. In addition to all of those who have contributed directly to the research
activities, the writer is indebted to Profcssors Mark Kac, Ba:«ley Rosser, and
other members of the Cornell faculty for their administrative support and encourage-
ment, and to Alexander Stieber, W. S, Holmes, and the administrative staffs

of the Cornell Aeronautical Laboratory and the Office of Naval Research whose

confidence and support have carried the program successfully through its

infancy.

Frank Rosenblatt
15 March 1961
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PART I

DEVELOPMENT OF BASIC CONCEPTS




1. INTRODUCTION

The theory to be presented here is concerned with a class of

'"" brain models' called perceptrons . By ""brain model' we shall mean

any theoretical system which attempts to explain the psychological function-

ing of a brain in terms of known laws of physics and mathematics, and known
facts of neuroanatomy and physiology. A brain model may actually be cons-
tructed, in physical form, as an aid to determining its logical potentialities

and performance; this, however, is not an essential feature of the model-
approach. The essence of a theoretical model is that it is a system with

known properties, readily amenable to analysis, which is hypothesized to
embody the essential features of a system with unknown or ambiguous
properties --in the present case, the biological brain. Brain models of
cifferent types have been advanced by philosophers, psychologists, biologists,
and mathematicians, as well as electrical engineers (c.f., Refs. 17, 31, 33,'
54, 59, 61, 74, 91, 105, 109). The perceptron is a relative newcomer to this
field,having first been described by this writer in 1957 (Ref. 78). Perceptrons
are of interest because their study appears to throw light upon the biophysics of
cognitive systems: they illustrate, in rudimentary form, some of the processes
by which organisms, or other suitably organized entitites, may come to
possess ''knowledge" of tho physical world in which they exist, and by which
the knowledge that they possess can be represented or reported when occasion
demands. The theory of the perceptron shows how such knowledge depends

upon the organization of the environment, as well as on the perceiving

system.




At the time that the first perceptron model was proposed, the
writer was primarily concerned with the problem of memory storage in
biological systems, and particularly with finding a mechanism which would
account for the "distributed memory'" and "'equipotentiality' phenomena found
by Lashley and others (Refs. 48, 49, 95). It soon became clear that the
problem of memory mechanisms could not be divorced from a consideration
of what it is that is remembered, and as a consequence the perceptron became

a model of a more general cognitive system, concerned with both memory and

percep—tion..

A perceptron consists of a set of signal generating units {(or
"neurons") connected together to form a network. Each of these units, upon
receiving a suitable input signal (either from other units in the network or
from the environment; responds by generating an output signal, which may
be transmitted, through connections, to a selected set of receiving units. Each
perceptron includes a sensory input (i.e., a set of units capable of responding
to signals emanating from the environment) and one or more output units, which

generate signals which can be directly observed by an experimenter, or by an

automatic control mechanism. The logical properties of a perceptron are

defined by:

L. Its topological organization (i.e., the connections among

the signal units);

A A set of signal propagation functions, or rules governing

the generation and transmission of signals;

35 A set of memory functions or rules for modification of

the network properties as a consequence of activity.




A perceptron is never studied in isolation, but always as part of a
closed experimental system, which includes the perceptron itseif, a defined
environment, and a control mechanism or experimenter capable of applying
well-defined rules for the modification, or "reinforcement' of the perceptron's
memory state. In most analyses, we are not concerned with a single percep-
tron, but rather with the properties of a class of perceptrons, whose topolo-
gical organizations come from some statistical distribution. A perceptron,
as distinct from some other types of brain models, or ''nerve nets', is usually
characterized by the great freedom which is allowed in establishing its
connections, and the reliance which is placed upon acquired biases, rather

than built-in logical algorithms, as determinants of its behavior.

Because of a common heritage in the philosophy, psychology,
physiology, and technology of the last few centuries, there are bound to be
similarities between the puints of view and the basic assumptions of the
theory presented here, and of other theories. The writer makes no claim. to
uniqueness in this respect. In particular, the neuron model employed is a
direct descendant of that originally proposed by McCulloch and Pitts; the
basic philosophical approach has been heavily influenced by the theories of
Hebb and Hayek and the experimental findings of Lashley; moreover, the
writer's predilection for a probabilistic approach is shared with such theo-

rists as Ashby, Uttley, Minsky, MacKay, and von Neumann, among others.

This volume is divided into four main sections. Part I,
commencing with this introduction, attempts to review the background,

basic sources of data, concepts, and methodology to be employed in the

study of perceptrons. In Chapter 2, a brief review of the main alternative




approaches to the development of brain models is presented. Chapter 3
considers the physiological and psychological criteria for a suitable model,
and attempts to evalute the empirical evidence which is available on several
important issues. Sufficient references to the literature are included through-
out these chapters so that the reader who requires additional background in
any of the areas discussed can use this as a guide for further reading. Part]
concludes with Chapter 4, in which basic definitions and some of the notation
to be used in later sections are presented. Parts II and IIl are devoted to a
summary of the established theoretical resﬁlts obtained to date. In these
sections, the strategy will be to present a number of models of increasing
complexity and sophistication, with theorems and analytic results on each
model to indicate its capabilities and deficiencies. Wherever possible,
established mathematical results will be presented first, followed by empirical
evidence from simulation and hardware experiments. Part Il (Chapters 5
through 14) deals with the theory of three-layer series-coupled perceptrons,
on which most work has been done to date.  These systems are called ""mini-
mal perceptrons'. Part III (Chapters 15 through 20) deals wath the theory of
multi-layer and cross-coupled perceptrons. where a great deal still remains
to be done, but where the most provocative results have begun to emerge.
Part IV is concerned with more speculative models and problems for future
analysis. Of necessity, the final chapters become increasingly heuristic in
character, as the theory of perceptrons is not yet éomplete, and new

possibilities are continually coming to light.

Part I (except for the chapter on definitions) is entirely non-
mathematical. In Fart II, and most of the remainder of the text, familiarity

with the elements of modern algebra and probability theory is assumed, and




should be sufficient for most of the material. In several proofs in Part II,
and to a greater extent in Part III, analytic methods are employed, assuming
knowledge of the calculus and differential equations; an elementary acquaintance

with differential geometry would also be useful. Symbolic logic is not required

here, but the student will find it necessary for reading much of the ancillary

literature in the field.

Several appendices are included which may prove helpful for
cross-referencing equations, definitions, and experimental designs which
are described in different chapters. Appendix A is a list of all symbols used
in a standard manner throughout the volume. Appendix B is a consolidated
list of theorems and corollaries. Appendix C lists the principal equations
used in the analysis of performance,and basic quantitative functions. Appendix
A contains a summary of the experiments used for testing and comparing
different perceptrons. These experiments are referred to by number,

throughout the text, and are decscribed in detail as they are first introduced.




2. HISTORICAL REVIEW OF ALTERNATIVE APPROACHES

2.1 Approaches to the Brain Model Problem

There are at least two basic points, which are fundamental to a
theory of brain functioning, on which most of the present-day theorists seem
to be in agreement. First is the assumption that the essential properties of
the brain are the topology and the dynamics of impulse-propagation in a net-

work of nerve cells, or neurons. This has been contested by a few theorists

who hold that the individual cells and their properties are less important than
the bulk properties and electrical currents in the cortical medium as a whole .
(c.f. Kohler, Ref 45). The '"nmeuron doctrine', however, has now been
accepted with sufficient universality that it need not be considered as an

issue in this report (Bullock, Ref.ll). It will be assumed that the essential
features of the brain can be derived in principle from a knowledge of the
connections and states of the neurons which comprise it. Secondly, there is
general agreement that the information-handling capabilities of biological
networks do not depend upon any specifically vitalistic powers which could

not be duplicated by man-made devices. This also has occasionally been
questioned, even today, by such neurologists as Eccles (Ref. 18) who
advocate a dualistic approach in which the mind interacts with the body.
Nonetheless, all currently known properties of a nerve cell can be simulated
electronically with readily available devices. It is significant that the
individual elements, or cells, of A nerve network have never been demons-
trated to possess any specifically psychological functions, such as ""memory',
"awareness', or "intelligence”. Such properties, therefore, presumably

rcside in the organization and functioning of the network as a whole, rather



than in its elementary parts. In order to understand how the brain works, it
thus becomes necessary to investigate the consequences of combining simple
neural elements in topological organizations analogous to that of the brain.
We are therefore interested in the general class of such networks, which

includes the brain as a special case.

While there is substantial agreement up to this point, theorists
are divided on the question of how closely the brain's methods of storage,

recall, and data processing resemble those practised in engineering today.

On the one hand, there is the view that the brain operates by built-in
algorithmic methods analogous to those employed in digital computers, while
on the other hand, there is the view that the brain operates by non-algorithmic
methods, bearing little resemblance to the familiar rules of logic and mathe-
matics which are built into digital devices (c.{. von Neumann, Ref. 105). The
advocates of the second position (this writer included) maintain that new funda-
mental principles must be discovered before it will be possible to formulate an
adequate theory of brain mechanisms. It is suggested that probabilistic and
adaptive mechanisms are particularly important here. This does not mean
that the actual biological nervous system is strictly one type of device or.

the other; the issue concerns the matter of emphasis, as to whether the brain
is primarily a more or less conventional computing mechanism, in which
statistical or adaptive processes play an incidental and non-esserntial role,

or whether the brain is so dependent upon such processes that a model which
fails to take them into account will find itself unable to account for psycho-

logical performance.
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These two points of view are associated with two basically
different procedures for studying the mechanisms of the brain and for the

development of brain models. The first procedure will be called the icuo-

typic model approach; it amounts to the detailed logical design of a special-

purpose computer to calculate some predete rmined '"psychological function'
such as the result of a recognition algorithm, or a stimulus transformation,
which is postulated as a plausible function for a nerve net to calculate. The
physical properties of this computer are then compared with those of the

brain, in the hopes of finding resemblances. The second procedure will be

called the genotypic model approach. Instead of beginning with a detailed

description of functional requirements and designing a specific physical
system to satisfy them, this approach begins with a set of rules for genera-
ting a class of physical systems, and then attempts to analyse their perform-
ance under characteristic experimental conditions to determine their common
functional properties. The results of such experiments are then compared
with similar observations on biological systems, in the hopes of finding a
béhavioral correspondence. It is the purpose of this chapter to review the
historical development and current status of these two alternative ''philo-

sophies of approach' to the brain model problem.

2.2  Monotypic Models

In the monotypic model approach, the theorist generally begins
by defining as accurately as possible the performance required from his
model. For example, he may speciiy a data processing operation, an

input-output or stimulus-response function, or a remembering and
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regenerating operation. In one typical model, the system is required to
normalize the size and position of a visual image, and to compare functions
of this normalized image with certain stored quantities required for identifi-
cation (Ref. 71). Given a description of the required performance in
sufficiently precise terms, the theorist then proceeds to design a computing
machine or control system embodying the required function, generally limiting
himself to the use of a set of modular switching devices which are analogous
to biological neurons in their properties. It is this last constraint which
distinguishes the nerve net theorist from any other designer of special
purpose computers confronted with the same problem. It is hoped that a
network which consists of neuron-hike elements, and is capable of computing

the required functions. will be found to resemble a biological nerve -net in its

organization and the computational principles employed.

While the simulation of animals, saints, and chessplayers by
animated machines and clockwork devices goes back many centuries, the
idea of constructing such.devices out of simple logical elements with neuron-
like properties is a relatively recent one, and received its first impetus from
two sources: First, Turing's paper "On Computable Numbers', 1n 1936. and
the subsequent development of stored-program digital computers by von
Neumann and others during the 1940's (Refs. 12, 100)gave rise to an
impressive family of f'universal automata'. capable of executing programs
which would enable them to perform any computation whatsoever with only
the simplest of logical devices being employed as '"building blocks'". Second,
the Chicago group of mathematical biophysicists which grew up about

Rashevsky after the publication of his "Mathematical Biophysics'" in 1938,
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(Ref. 73) began to investigate the manner in which ""nerve nets' consisting of
formalized neurons and connections might be made to perform psychological
functions. Householder, Landahl, Pitts, and others made notable contributions

to this effort during the late 1930's and early 1940's (Refs. 35, 69, 70}).

In 1943, the doctrine and many of the fundamental theorems of this
approach to nerve net theory were first stated in explicit form by McCulloch
and Pitts, in their well-known paper on "A Logical Calculus of the Ideas
Immanent in Nervous Activity". The fundamental thesis of the McCulloch-
Pitts theory is that all psychological phenomena can be analyzed and understood
in terms of activity in a network of two-state (all-or-nothing) logical devices.
The specification of such a network and its propositional logic would, in the
words of the writers, "contribute all that could be achieved' in psychology,
""even if the analysis were pushed to ultimate psychic units or 'psychons’,
for a psychon can be no less than the activity of a single neuron... The 'all-
or-none' law of these activities, and the conformity of their relations to
those of the logic of propositions, insure that the relations of psychons are
those of the two-valued logic of propositions.' (Ref. 57). Despite the
apparent adherence to an outdated atomistic psychological approach, there
is an important contribution in the recognition that the proposed axiomatic
representation of neural elements and their properties permits strict loéical
analysis of arbitrarily complicated networks of such elements, and that
such networks are capable of representing any logical proposition whatever.
As von Neumann states in a summary of the McCulloch-Pitts model,

(Ref. 103) "The 'functioning' of such a network may be defined by singling

out some of the inputs of the entire system and some of its outputs, and
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then describing what original stimuli on the former are to cause what ultimate
stimuli on the latter...McCulloch and Pitts' important result is that any
functioning in this sense which can be defined at all logically, strictly, and
unambiguously in a finite number of words can also be realized by such a

formal neural network."

A great variety of subsequent models have made use of this
axiomatic representation, which we now refer to as the '""McCulloch-Pitts
neuron'. As stated in the original paper (Ref. 57), the basic assumptions in

this representation are:

" 1., The activity of the neuron 1s an 'all-or-none!'

process.

2. A certain fixed number of synapses must be
excited within the period of latent addition in
order to excite a neuron at any time, and this
number is independent of previous acitivy and

position on the neuron.

3. The only significant delay within the nervous

system is synaptic delay.

4. The activity of any inhibitory synapse absolutely

prevents excitation of the neuron at that time.

5. The structure of the net does not change with time."
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These postulates are such as to rule out memory except in the form of
modifications of perpetual activity or circulating loops of impulses in the
network., Any non-volatile memory, such that the functioning of the network
at a given time depends upon previous activity even though a period of total
inactivity has intervened, is impossible in a McCulloch-Pitts network.
However, a McCulloch Pitts network can always be constructed which will em-
body whatever input-output relations might be realized by a system with

an arbitrary memory mechanism, provided activity is allowed to persist in

the network.

Later writers, notably Kleene (Ref. 43) have considered in
more detail the kinds of events which can be represented by networks of
McCulloch-Pitts neurons. The only important limitation is that events
whose definition depends upon the choice of a temporal origin point, or
events which extend infinitely into the past, may not be representable by
outputs from finite networks. Any event which can be described as one of
a definite set of possible input sequences over a finite period of time can be
represented. In particular, any events which might conceivably be recognized
by a biological system can be represented by outputs of networks of McCulloch-

Pitts neurons.

In later papers by Pitts and McCulloch (Ref. 71) and by
Culbertson (Refs. 16, 17) specific automata designed to perform actual
""psychological' functions such as pattern recognition, have been described.
Culbertson, in particular has carried out such designs in explicit detail for

a large number of interesting problems. The approach which he advocates
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is expounded in his 1950 work on "Consciousness and Behavior'' as

follows:

"Neuroanatomy and neurophysiology have not yet developed
far enough to tell us the detailed interconnections holding
within human or animal nets...Consequently, ... we cannot
start with specified nerve nets and then in a straightforward
way determine their properties. Instead, it 1s the reverse
problem which always occurs in dealing with organic behavior.
We are given at best the vaguely defined properties of an
unknown net and from these must determine what the structure
of that net might possibly be. In other words, we know, at
least in a rough way, what the net does (as this appears in
the behavior of the animal or man) and from this information
we have to figure out what structure the net must have...Our
investigation passes through two stages. In the first stage--
the behavioristic inquiry--we ignore the inner constituents,
1.e., the nervous system and its activity, and concentrate
our attention instcad on the observable relations between the
stimuli affecting the organism and the responses to which
these stimuli give rise...This makes the second stage--the
functional inquiry--possible. Here, as Northrop says, we
concentrate our attention on the inner (throughput) consti-
tuents of the system and point out the ways in which the
receptor cells, central cells, and effector cells could be
interconnected so that the input and output relations. . .would
be those discovered in stage 1."

While such a program can hardlv be criticized on logical grounds,
it appears pragmatically to have fallen short of the proposed goals. Starting
rather suddenly, with the development of automata theory in the late 1930's,
the ready applicability of symbolic logic brought this approach to early
mathematical sophistication. After the first flood of proposed models,
further progress has been disappointingly trivial, and returns seem to be
diminishing rapidly. The proraised biological '"explanations' have been
particularly lacking. In this writer's opinion, there are at least five main

reasons for this:
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There is a lack of sufficiently well defined psychological
functions as a starting point. The approach requires
essentially full knowledge of input-output relations for the
behavior of an organism, and such knowledge is not

available for any biological species.

Constructed solutions generally show poor correspondence
to known conditions of neuroanatomy and neuroeconomy;
the numbers of neurons required often exceed those in
biological nervous systems, and the logical organization
generally requires a precision of connections which
appears to be absent in the brain. In some cases, a

single misconnection would be sufficient to make the

system inoperable .

The models fail to yield general laws of organization.
A monotypic model is in general overdetermined,
corresponding at best to a biological phenotype,

rather than a species as a whole; its specification in
the form of a detailed "wiring diagram'' frequently
misses essentials in a plethora of detail. Unique
solutions for the proposed functions are generally
lacking and an enormous variety of models can be
generated which appear to solve the same problem
equally well. Therefore, unless the system is actually
tested against its biological counterpart, nothing is
gained by a detailed construction of the model except a
further confirmation of an existence theorem which is

already well established.
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(4) The models lack predictive value. Once a particular
model has been proposed, further analysis can reveal
little that is not included in the functional description

with which we began.

(5) The models are not biologically testable in detail.
Specific connections cannot be traced with sufficient
precision in nervous tissue to say whether or not a
particular wiring diagram is exactly realized. Conse-
quently, the models are.fated to remain purely specu-
lative unless histological techniques are improved to

a highly improbable degree.

In the foregoing, we have concentrated on the line of models
which have attempted to represent the brain as a symbolic logic calculator,
in which events of the outside world are represented by the firing or non-
firing of particular neurons. It is in these models that rigorous mathematical
treatment has been most successfully achieved. Not all monotypic models
are of this variety, however. Field theorists such as K6hler have taken
exception to the idea that psychological phenomena can be represented in
this fashion. Kohler, arguing for an isomorphic representation of perceptual
phenomena, asks (Ref. 46):""How can a cortical process such as that of a
square give rise to an apparition with certain structural characteristics, if
these characteristics are not present in the process itself? According to
Dr. McCulloch, this is actually the case. But if we follow the example of

physics, we shall hesitate to accept his view. In physics, the structural
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characteristics of a state of affairs are given by the structural properties

of the factors which determine that state of affairs... Situations in physics
which depend upon the spatial distribution of given conditions never have
more, and more specific, structural characteristics than are contained in
the conditions'. While K8hler's own model is not generaly considered
plausible today, his criticism is a significant one, and a number of theorists,
such as Lashley (Ref. 50) MacKay (Refs. 55,56) and Green (Ref. 28) have
been concerned with possible forms of representation of perceptual informa-
tion which would preserve the intrinsic structural features of the perceived

event rather than merely assigning an arbitrary symbol to it.

The main line of monotypic models, although failing to provide
a satisfactory brain model, has left us a number of important analytic tools
and concepts, including the McCulloch-Pitts neuron, and the theorems
concerning the existence of networks representing arbitrary functions. For
the actual design of plausible organizations, however, the genotypic approach

appears to hold more promise,

2.3  Genotypic Models

In the monotypic approach, the properties of the components,
or neurons, which comprise the networks are fully specified axiomatically,
and the topology of the network is fully specified as well. In the genotypic
approach, the properties of the components may be fully specified, but the
organization of the network is specified only in part, by constraints and

probability distributions which generate a class of systems rather than a
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specific design. The genotypic approach, then, is concerned with the
properties of systems which conform to designated laws of organization,

rather than with the logical function realized by a particular system.

This difference in approach leads to important differences in
the types of mndels which are generated, and the kinds of things which can
be done with them. In the case of monotypic models, for example, the
propositional calculus is applicable and probability theory is poorly suited
to the analysis of performance, since a single fully deterministic system is
under consideration which either does or does not satisfy the required
functional equations. In dealing with genotypic models, on the other hand,
sumbolic logic is apt to prove cumbersome or totally inapplicable (even
though, in principle, any particular system which is generated might be
expressed by a set of logical propositions). In the analysis of such models,
the chief interest is in the properties of the class of systems which is
generated by particular rules of organization, and these properties are
best described statistically. Probability theory therefore plays a promi-
nent part in this approach. A second major difference is in the method of
determining functional characteristics of the models. In the monotypic
approach, the functional properties are generally postulated as a starting
point. In the genotypic approach. they are the end-objective of analysis,
and the physical system itself (or the statistical properties of the class of
systems) constitutes the starting point. This means that psychological
functions need not be determined in full detail before setting out to construct

a model, and, indeed, it is hoped that such models may help in answering

open psychological questions.
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While the monotypic approach arose rather suddenly with the
advent of modern computers and control system theory, and rapidly advanced
to a high level of mathematical sophistication, the genotypic approach has
been much more gradual in its development, and has not yet developed all
of the mathematical tools required to deal adequately with its problems.

The genotypic models have been influenced less by the engineering sciences,
and more by physiology and neuroanatomy. The descriptive anatomy of the
nineteenth century laid the ground'work for modern studies of localization of
function in the brain,and neurologists such as John Hughlings Jackson noted
the apparent plasticity of the system -- the ability of neighboring regions to
take over the function of damaged areas. Pavlov and others speculated about
possible mechanisms for adaptive modification of the central nervous system
in the early part of this century, and various hypotheses for the deposition of
""memory traces' were of interest to psychologists and physiologists alike.
The doctrine of equipotentiality, propounded by Lashley (Ref. 49), went even
further in claiming complete interchangeability of most parts of the cerebral
cortex, and evidence for "distributed memory' which suggested that "traces'
must be more or less uniformly dispersed throughout the cortical tissue
began to accumulate. All of this neurological evidence engendered a picture
of the brain as a relatively undifferentiated structure, capable of undergoing
radical reorganization by means of unspecified adaptive mechanisms, and
showing only gross anatomical equivalence from one individual to another.
While recent work on localization (Refs. 51, 65, 66, 94, 108) has shown
some surprisingly precise mapping of functions, modern morphological
investigations (Refs. 8, 52, 93) have borne out the apparently statistical
organization of the "fine structure' of neurons and their interconnections.

It now seems reasonable to suppose that while there are many constraints
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on the organization of neurons in the brain, which are undoubtedly essential
to the system's functioning, these constraints take the form of prohibitions,
biases, and directional preferences, rather than a specific blueprint which
must be followed to the last detail. In order words, there are enormous
numbers of functionally equivalent systems, all obeying the same rules of
organization, and all equally likely to be generated by the genetic mechanisms

of a particular species.

While the neurologists mentioned above had a great deal to say
about the observed and hypothetical organization of the brain, they were not
concerned with the construction of models in the sense of detailed theoretical
systems from which precise deductions could be made. Psychologists and
philosophers, more willing to indulge in speculation, were the first to attempt
detailed conjectures on the maturation of psychological functions in systems
which might justifiably be called "brain models'. Hebb (Ref. 33) and Hayek
(Ref. 32), following the tradition of James Stuart Mill and Helmholtz, have
attempted to show how an organism can acquire perceptual capabilities
through a maturational process. For Hayek, the recognition of the attri-

butes of a stimulus is essentialy a problem in classification, and his point

of view has inspired Uttley (Refs. 101, 102) to design a type of classifying-
automaton which attempts to translate the approach intoc more rigorous
mathematical form. Hebb's model is more detailed in its biological
description, and suggests a process by which neurons which are frequently
activated together become linked into functional organizations called

""cell assemblies' and "phase sequences' which. when stimulated,mcorres-

pond to the evocation of an elementary idea or percept. While Hebb's
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work is far more complete in its specification of a "model’ than most
preceding suggestions along this line, it is still too programmatic and too
lopse in its definitions to permit a rigorous testing of hypotheses. It should
be considered more as a description of what a satisfactory model might
ultimately look like than as a fully formulated model in its own right. None-
theless, it comes sufficiently close to a detailed specification so that
Rochester and associates, using an IBM corﬁputer, were able to propose
enough of the missing detail to put the cell assembly hypothesis to an
empirical test (Ref. 77). Unfortunately, with a theory so loosely specified,
the inconclusive results of the IBM experiments carry little weight in
evaluating Hebb's original system. Milner, in a recent paper (Ref. 58) has
attempted to update the Hebb theory, and it may be that his model can be

more readily translated into analyzable form, although this has not yet been

done.

It is interesting that one of the first applications of probability
theory to brain models is due to Landahl, McCulloch, and Pitts, appearing
in 1943 along with the McCulloch-Pitts symbolic logic model (Ref. 47). In
this paper, the topology of the network is still assumed to be a strictly
deterministic, fully known organization, but impulses are assumed to be
propagated with known frequencies but with uncertainties in their precise
timing. A theorem is stated which permits the substitution of frequencies
for symbols in the logical equations of the network, in order to obtain the
expected frequency with which different cells will respond. This statistical
treatment is related to the work of von Neumann (Ref. 104) on the proba-

bility of error in networks with fallible components.
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The first systematic attempt to develop a family of statistically
organized networks, and to analyze these in a rigorous fashion by means of
a genotypic approach seems to have been due to Shimbel and Rapoport, in
1948 (Ref. 92). Starting with an axiomatic representation of neurons and
connections, similar to that of McCulloch and Pitts, a network is character-
ized by probability distributions for thresholds, synaptic types, and origins

wer

of connections. A general equation is then developed for the probabilit}; that A- =
AR e wr s

S

a neuron at a specified location will fire at a spéiified time, as a function of
‘-’; -

preceding activity and parameters of the net.”. This is applied to a number.of. =
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specific classes of networks to determine the possibility of steady-state -
activity, and changes in the firing distribution with time. This work is;a, = .
forerunner of a number of stability studies (e.g., Allanson, Ref. 2) whléh
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are still of interest.
The use of a digital computer by Rochester and associates was

mentioned above in connection with Hebb's model. Simulation of a statistically

connected network .to.investigate possible learning capabilities was f_ir_ét i

carried out successfull? by Farley and Clark in 1954 (Réf. l_O)._-_Althwoq»g};.

mathematical analysis was not atte_fnpt.ed in either the Farley-Cl'ark'Qr_ the
== Rochester models, they illustrate a convenient method of axiomatizing a

network (by means of a computer program) to a degree which makes the

investigation of hypotheses possible. While none of these experiments led

to very sophisticated systems, they are of considerable historical interest,

and the mechanism for pattern generalization proposed by Clark and Farley

(Ref. 15) is essentially identical to that found in simple perceptrons.
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Statistical models of various types have been proposed during the
last decade. In particular, the models of Beurle, Taylor, and Uttley (Refs. 6,
99, 101, 102) are of interest as attempts to analyze models with a clear
resemblance to the organization of a primitive nervous system, with receptors,
associative elements, and output or motor neurons. Mareover, in some of
these models, environments of sufficient complexity to permit the repre-
sentation of visual and vemporal patterns (albeit of a very primitive type)
are included in the analysis. Minsky (Ref. 59) has also devised and analyzed

several models capable of learning responses to simple stimuli.

A contribution of considerable methodological significance was
Ashby's "Design for a Brain', in 1952 (Ref. 3). While Ashby's work (despite
its title) does not specify an actual brain modcl in our present sense, it

develops the rationale for an analysis of closed systems which must include

the environment as well as the responding organism and rules of interaction

~as the object of study. Ashby's fields of variables correspond closely to

our concept of "experimental systems' which will be defined in Chapter 4.
In addition to his conceptual contribution, which is concerned with the

general approach to be used rather than with a specific model, Ashby has
demonstrated in a number of experiments how statistical mechanisms can

yield adaptive behavior in an organism.

While the genotypic approach has found favor among many

biologists, it is by no means universally accepted. A typical criticism is
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voiced by Sutherland (Ref. 97) in connection with Hebb's system:

""When Hebb's theory was first put forward, it was hailed
as showing how it might be possible to account for behavior
in terms of plausible neurophysiological mechanisms. ..
However, a moment's reflection shows that, if he is right,
what he has really succeded in doing is to demonstrate

the utter impossibility of giving detailed neurophysiological
mechanisms for explaining psychological or behavioral
findings. According to Hebb the precise circuits used in
the brain for the classification of a particular shape will
vary from individual to individual with chance variation

in nerve connectivity determined by genetic and matura-
tional factors... Different individuals will achieve the
same end result in behavior by very different neurological
circuits... If Hebb's general system is right, it precludes
the possibility of every making detailed predictions about
behavior from a detailed model of the system underlying

behavior."

While objections such as this seem to stem from a misunderstanding
of the possibility of obtaining seemingly deterministic phenomena from a
statistical substrate (as in statistical mechanics) the above argument is bols-
tered by many findings which suggest complicated hereditary mechanisms
for the analysis of stimuli in "instinctive' behavior. The work of Sperry
and Lettvin has already been cited in connection with the mechanisms for
precise localization of connections which seem to exist in the brain. Our
conclusion is that the biological system must employ some mixture of
specific conneciion mechanisms and statistically determined structures;,

just how much constraint igpresent in the genetic constitution of the brain is

an open question.
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On most of the specific points of criticism raised in connection
with monotypic models, the genotypic approach seems to fare much better.
Detailed psychological functions are not required as a starting point. Detailed
physiological knowledge of the brain would be helpful, but even a rough para-
metric des:cription enables us to start off in the right direction, and present
models have a considerable way to go before they have assimilated all of the

physiological data which are available.

Since this approach begins with the physical model rather than the
functions which must be performed, it is easy to guarantee its conformity in
size and organization to the general characteristics of a biological system.
Most important is the fact that this approach appears to be yielding results of
increasing significance and interest, and the models frequently suggest
progressive lines of development from simple first approximations to more
sophisticated systems. In the application of the genotypic approach to per-
ceptrons, a number of laws of considerable generality have been discovered,

as will be seen in subsequent chapters.

2.4 Position of the Present Theory

The groundwork of perceptron theory was laid in 1957, and
subsequent studies by Rosenblatt, Joseph,and others have considered a
large number of models with different properties (Refs. 7, 30, 31, 40,
41, 76, 79, 80, 81, 82, 84, 85, 86). Perceptrons are genotypic models,
with a memory mechanism which permits them to learn responses to

stimuli in various types of experiments. In each case, the object of
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analysis is an experimental system which includes the perceptron, a defined
environment, and a training procedure or ‘agency. Results of such analyses
can then be compared with results of comparable experiments on human or
animal subjects to determine the functional correspondence and weaknesses
of the model. A number of specific psychological tasks and criteria, which
will be discussed in the following chapter, are used for the comparison of

different systems.

Perceptrons are not intended to serve as detailed copies of any
actual nervous system. They are simplified networks, designed to permit
the study of lawful relationships between the organization of a nerve net, the
organization of its environment, and the '"psychological' performances of which
the network is capable. Perceptrons might actually correspond to parts of
more extended networks in biological systems; in this case, the results
obtained will be directly applicable. More likely, they represent extreme
simplifications of the central nervous system, in which some properties are
exaggerated, others suppressed. In this case, successive perturbations and

refinements of the system may yield a closer approximation.

The main strength of this approach is that it permits meaningful
questions to be asked and answered about particular types of organization,
hypothetical memory mechanisms, and neuron models. When exact
analytic answers are unobtainable, experimental methods, either with
digital simulation or hardware models, are employed. The model is not

a terminal result, but a starting point for exploratory analysis of its

behavior.
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£ PHYSIOLOGICAL AND PSYCHOLOGICAL CONSIDERATIONS

In the last chapter, a methodological doctrine was proposed,
which undertakes to evaluate classes of brainlike systems by comparing
their performance with that of biclogical subjects in behavioral experi-
ments; by gradually increasing the sophistication and varying the axio-
matic constraints which define the experimental systems, it is hoped that
models which closely resemble the biological prototype can ultimately be
achieved. In this chapter, the desiderata for a satisfactory brain model
are considered in more detail, from the standpoint of physiology and
psychology. What are the parametric constraints, functional properties,
and performance criteria which must be met, in order to achieve a model

which is a plausible representation of the brain?

The following discussion comes under three main headings:
(1) established fundamentals; (2) current issues; and (3) the design of
experimental tests of performance. It is not our purpose to review all of
the relevant background in biology and psychology, but rather to highlight
those points which bear most directly upon the present undertaking, and
to suggest certain areas in which investigations might provide decisive
evidence for or against some of the models which we shall propose. It
will be noted that no attempt has been made to distinguish specifically
"psychological' or specifically "physiological" problems in the following
sections. Such distinctions are not only arbitrary in a number of the
cases considered, but also tend to obscure the fact that we are interested

in all of these problems because of their relevance to brain models, rather

-29-




than to psychology or physiology per se. In this discussion, attention .
will be concentrated on the level of complexity which seems most commen-
surate with that of the proposed models. Psychological material on psycho-
neuroses, or on attitude formation, for example, while it might be brought
to bear on the evaluation of some future models, is hardly likely to be
relevant at this time. On the physiological side, we are chiefly concerned
with the overall organization of the nervous system, its microstructure,

and conditions for impulse transmissions; we are less concerned with
details of neuroanatomy and neurochemistry, although such data may
become important in more sophisticated models, where a closer correlation

with the biological system is sought. ) oo

3.1 Established Fundamentals BN ' .' .-_‘.

i

3.1.1 Neuron Doctrine and Nerve Impulses .

wr
e

It was only during the first decade of this century that a strong
case was developed for regarding the neuron as the basic anatomical unit
of the nervous system. The demonstration that this is ;hé case rests largely
upon the work of Ramon y Cajal (Ref. 14). Since Cajal's time, a great variety
of neurons, differing ir size, numbers of dendritic and axonal processes, and
the distribution of these, have been described by neurcanatomists (Refs. 8,
52, 93). Today it is generally accepted that in virtually all biological species,
the nervous system consists of a network of neurons, each consisting of a

cell body with one or more afferent (incoming) processes, or dendrites, and

one or more efferent (outgoing) processes, or axons. The axons branch into
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small fibers which may make contact with, but remain separate from the
surface membrane of cells or dendrites upon which they terminate. Neurons

are generally divided into three classes: (1) sensory neurons, which generate

signals in response to energy applied to sensory transducers, such as photo-

receptors or pressure sensitive corpuscles; (2) motor neurons, (or effector
neurons) which transmit signals to muscles or glands and directly control

their activity; (3) internuncial neurons, (or associative neurons) which form

a network connecting sensory and motor neurons to one another. The brain,

.+, 0r central nervous system, is made up almost entirely of neurons of this

laf‘s; type.

The actual signals carried by these neurons may take one of

several forms. Until recently. it was supposed that all information in the

2

nervous system was represented by a code of all-or-nothing impulses,

co_fresponding to on-off states of the neurons. A sufficient input signal was

supposed to trigger the receiving cell directly into emitting a spike potential,

“which was transmitted without decrement from the receiving region of the

' _..'_dendrites to the cell.body, and out along the axon to the terminal endbulbs,

‘..:v'«'hle.re it might or might not succeed in triggering later cells in the network.
In a recent review (Ref. 11) Bullock has pointed out that this view has been
largely supplanted by a far more complicated picture. While it is true that

“the transmission of signals over long distances is generally accomplished
by means of all-or-nothing spike propagation along the axons of nerve cells,

the spike impulse is not a direct response to impulses which arrive at the

dendrites, and may originate at a point which is separated by a considerable
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distance from the site at which incoming impulses are received. Essentially,
the currently accepted concept is that the dendritic structure and cell body
jointly act as an integrating systern, in which a series of incoming signals
interact to establish a pre-firing state in a region at the base of the axon,
from which impulses originate. If this pre-firing state reaches a threshold
level (presumably measured by membrane depolarization) at a point within
the critical region, a spike potential is initiated, and spreads without decre-
ment along the axon. The interactions which may occur in the cell body and
dendrites, however, invol~v~e potential fields in which the effects of impulses
received at a given poin.t spread over the surrounding membrane surface in

a decrementing fashion. These effects may be graded in intensity, depending
on frequency of impulses received, and the state of the receiving membrane
at the time. Successions of impulses arriving at the same synapse can
sometimes cause an increase in the sensitivity of the receiving membrane
(facilitation) and can sometimes cause a progressive diminution in sensitivity
(Ref. 11). There is evidence to suggest that different local patches of surface
membrane are differently specialized, and respond in different ways to
impulses received, even within the same neuron. Some of these regions
appear to act as sources of internally generated signals, which may lead

to spontaneous activity of the neuron, and the emission of spike impulses

without any input signals from outside the cell.

Two main types of synapses are recognized: excitatory and
inhibitory. It is generally assumed, although it has not been proven, that
a single neuron is either all excitatory or all inhibitory, in its effect upon

post-synaptic cells. It remains possible, however, that the individual
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synaptic endings are specialized, some of them releasing a depolarizing
transmitter substance {excitatory endings) while others release a hyper-
polarizing substance (inhibitory endings). A single synapse, so far as
1s known, remains either excitatory or inhibitory, and is incapable of

changing from one to the other.

The nerve impulse itself is a basically non-linear response to
stimulation. It is supported by energy reserves of the axon by which it is
transmitted, rather than by a propagation of energy from the sources of
excitation. The nerve impulse is manifested by a moving zone of electrical
depolarization of the surface membrane of the neuron, the exterior of which
is normally 70 to 100 millivolts positive relative to the interior. This zone
tends to spread along the axon due to ionic currents which tend to break
down the potential difference between the interior and exterior of the
neuron, until the membrane is repolarized by metabolic processes (see
Eccles, Refs. 18, 19 ). The resulting ""spike potential' takes the form of
an electrically negative impulse (measured relative to the normal surface
potential of the membrane) which propagates down the fiber with an average
velocity of about 10 to 100 meters per second, depending on the diameter

of the {ibers (c. {., Brink, Ref. 9)}.

The arrival of a single (excitatory) impulse gives rise to a
partial depolarization of the post-synaptic membrane surface, which
spreads over an appreciable arca, and decays exponentially with time.
This is called a local excitatory state (l.e.s.). The l.e.s. due to
successive impulses is (approximately) additive. Several impulses

arriving in sufficiently close succession may thus combine to touch off
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an impulse in the receiving neuron if the local excitatory state at the base
of the axon achieves the threshold level. This phenomenon is called

temporal summation. Similarly, impulses which arrive at different points

on the cell body or on the dedrites may combine by spatial summation to

trigger an impulse if the 1.e.s. induced at the base of the axon is strong

enough.

The passage of an impulse in a given cell is followed by an

absolute refractory period during which the cell cannot be fired again,

regardless of the level of input activity. This is equivalent to an infinite

threshold during this period. The spike potential and absolute refractory

period last about 1 millisecond. Finally, there is a relative refractory
period which may last for many milliseconds after the initial impulse.
During this time, the threshold gradually returns to normal, and may
even fall to somewhat below its normal level for a time. While the
response of a cell to a single momentary stimulus, such as an electrical
pulse, is markedly non-linear (the amplitude of the generated impulse
being quite independent of the amplitude of the triggering signal) the
effect of a sustained excitatory signal, in many cases, is to evoke a
volley of output spikes, the frequency of which may be roughly propor-
tional to the intensity of the stimulus over a wide range. This is parti-
cularly true of sensory neurons, where the frequency of firing may be

used to determine the intensity of the stimulus energy with considerable

accuracy.
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The general picture of the nervous system, then, is one of a
large set of signal generators, each having one or more outputs, on which
nerve impulses may appear. These impulses may vary in frequency, and
to some extent in amplitude, but seem to carry information mainrly in a
pulse-coded form. The signal generators themselves are decision elements
of a most intricate type; each one makes its decision to initiate an output
impulse according to a complicated function of the series of signals received
at each of its synapses or receptor areas, as well as its own internal state.
In a brain model, a neuron of this complexity would tend to make the system
unintelligible and unmanageable with the analytic and mathematical tools
at our disposal. Simplifications will therefore be introduced, as in the
manner of the McCulloch-Pitts neuron; but it should be remembered that
the biological neuron is considerably more complicated, and may incorporate

within itself functions which we require whole networks of simplified neurons

to realize.

3.1.2 Topological Organization of the Network

The human brain consists of some 1010 neurons of all types.
These are arranged in a network which receives inputs from receptor
neurons at one end, and conveys signals to the effector neurons at the
output end. Different sensory modalities -- vision, hearing, touch,etc. --
communicate with the central nervous system by way of distinct nerve
bundles, which enter it at different points. Each of these modalities,
after passing its information t-hrough a network of cells which respond

more or less exclusively to stimuli from that modality, eventually contri-
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butes to a common pool of activity in the "association areas' of the central
nervous system (CNS). Output signals originate either from the parts of
the CNS which are specific to a particular modality (for example, the
pupillary reflex mechanism) or from the common activity areas (as in
speechj. Final outputs may go through a series of stages in which motor
patterns or sequences are selected, and detailed coordination is regulated.
From these motor control regions, feedback paths re-enter the association
areas and sensory integration areas, so that the possibility of an elaborate

servo-mechanism for the control of motor activity exists.

While this general picture holds true for most biological
organisms, there is considerable variation both in gross and detailed
anatomy. from species to species and individual to individual. In under-
taking to design a first order approximation to this structure for use in a
brain model, we will begin with a network consisting of a single array of
sensory units, a layer of association units, and a single effector, or
response unit. In later models, more complicated structures will be
considered. Even the simplest models, however, are capable of showing
a surprising similitude to the functional properties of the brain. It seems
reasonable, therefore, to regard the complications of neuroanatomy in the
various species as elaborations of a basically simple schema, which is to
be found throughout. This basic plan of organization is illustrated in

Figure 1.
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The distribution of cell types and connection patterns has been
studied by Lorente de N§, Sholl, Bok, and others (Refs. 8, 52, 93). A
typical cell in the cerebral cortex receives input connections from some
hundreds of other cells, which may be located in widely scattered regions,
but its output is more likely to be transmitted to a relatively localized
region. Cells which receive sensory input signals are likely to have a

restricted field of origins in a sensory surface, such as the retina or

the skin.

The mapping of the frog retina into the brain has been studied
by Lettvin (Ref. 51) who finds a rather precise topographic mapping, in
which several different t.ypes of information arc represented in different
layers.* This topographic mapping is established genetically despite
the fact that the fibers which transmit the information from the retina
are apparently completely scrambled' in the optic nerve. Moreover,
experiments by Sperry (Ref. 94) and more recently by Lettvin (Ref. 51)
show that if the optic nerve is severed and allowed to grow together again,
the fibers which originally transmitted to a particular terminal location will
tend to reconnect to that same terminal location, with surprisingly little
loss of precision. This points to a highly specific neural organizing
capability, which must be taken into account in considering admissible
types of constraints for a brain model. In the mammalian brain, each
sensory modality appears to be represented by an orderly topographic
mapping analogous to that just described. Auditory stimuli, for example,
are mapped into a region which is organized according to pitch; tactile

stimuli are mapped according to body location, and so forth. Similarly,

b
’ See also Section 3.1.4.
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the motor neurons are organized. in the cerebral cortex, in an ordered
arrangement which is topologically similar to the organization of the

muscles which are controlled.

In contrast to the highly specific regional organization in the
gross anatomy of the sensory projection areas of the cortex, the detailed
microstructure of the network appears to be essentially random, governed
only by directional gradients and preferences, and statistical distributions
of fiber lengths for various types of cells (see Sholl, Ref. 93). In the
human nervous system, it appears that the most specific and constrained
tepological organizations are to be found in the sensory and motor systems,
while the intervening association network of the CNS is less tightly
controlled in its organization, presumably depending more on learning
and adaptive modification to establish the required pathways and linkages.
The degree of precision in establishing the topological organization of
neurons in even the most highly constrained reflex mechanisms is probably
far less than that in most artificial data processing devices, and must retain
a certain degree of randomness wherever the number and density of
connections is appreciable. Unfortunately, no data are available which
would indicate the complexity of topological constraints which correspond
to the highly complex inherited behavior patterns which are known to
exist in many species. Since the nature of such constraints is unknown,
we shall avoid gratuitous assumptions about them, as far as possible.

In the development of brain models, it will be our general strategy to sta:rt

out with minimally constrained networks, and examine the consequences of

introducing particular types of constraints, one at a time.
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3.1.3 Localization of Function

Ever since the brain was first credited with the control of
psychological activity, attempts have been made to delineate separate
functions for its different parts. In the last century (largely under the
influence of Gall) this took the form of an assignment of ''mentai faculties"
such as intelligence, combativeness, amativeness, and religiosity, to
special regions of the brain. As techniques for the study of functional
anatomy improved, this gave way to a concept of organization into sensory
tracts, motor tracts, and association tracts. The functional organization
which was revealed has been most firmly established in the case of sensory
and motor tracts, where a particular position in the brain is correlated with
a particular sensory locus, or a particular set of muscles whose activity it
controls. An excellent review of sensory and motor mapping can be found
in Ruch (Refs. 88, 89). More recently, a {iner breakdown in the localization
of sensory functions has been demonstrated by Lettvin and associates (Ref. 51).
Four distinct types of information, involving distinct aspects of the visual
stimulus (contrast, curvature, movement, and dimming of illumination) have
been shown to be mapped into four distinct layers of the tectum of the frog.
This suggests localization of analytic functions, of a sort which has been

suspected but not previously demonstrated.

In dealing with the so-called "association areas!' of the cerebral
cortex, and with other parts of the brain which are not clearly related to
sensory data processing or motor coordination, something of the old
treatment in terms of "mental faculties' still remains; specifically,

centers have been found which are commonly attributed with primary
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responsibility for temporary and permanent memory, for emotional behavior,
for speech recognition and speech production, and (in the frontal lobes) for
the integration of complex goal-directed activities. The lack of clear opera-
tional tests for such capabilities has been a hindrance to progress in such
functional mapping, and the results are considerably more ambiguous than

is the case with sensory and motor functions. A discussion of current
evidence on brain localization with respect to these "higher faculties' is
found in Pribram (Ref. 72). Much of the recent work is concerned with the
localization of tracts which influence motivation, alertness, and conscious-

ness in the organism (Refs. 1, 22, 38, 64, 65).

One feature which is of particular importance for brain models
is the apparent plasticity of localization in the "association areas' (or
"intrinsic systems'’, to use the terminology advocated by Primbram) in
contrast to the relatively fixed and irreplaceable character of the sensory
and motor tracts. Loss of function, due to destruction of association cortex,
is apt to be transient, with adjacent areas taking over the function after a
period of readaptation. Jackson, in his classic studies of the motor cortex,
(Ref. 36) observed that even here localization is not rigid and absolute, and
that a certain amount of flexibility exists, pcrmitting the functions of damaged
tissue to be taken over by neighboring areas. The sensory projection areas,
on the other hand, appear to be indispensible to perception; destruction of
the optical cortex leads to permanent blindness in an area corresponding to
the location of the lesion, and similar phenomena are to be found in other
sensory modalities. Thus, the extreme hypothesis of equipotentiality

advocated originally by Lashley (Ref. 49), (who observed that cortical
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ablation appeared to produce a general deficit in performance proportional

to the amount of cortex extirpated, rather than eliminating specific memories
and abilities) has been modified in the direction of relative localization,
which is quite strict for certain sensory functions, and comparatively weak

and readily modified for more complicated control functions, thinking, and

memory.

A rather different approach to localization is suggested by the
histological studies of cortical tissue, initiated originally by Brodmann, and
pursued more recently by Lorente de N& and Sholl (Refs. 52, 93). The
"cytoarchitectonic areas' which have been described in these studies differ
in their microstructure and detailed organization, and attempts have been made
to relate such differences to the function of the cortex in which they occur.

To date, this approach has not led to particularly significant results, although
in principle it may ultimately suggest the essential organizational properties

which must be incorporated into a brain model.

At the primitive level of organization to which our models will
aspire at this time, current data on brain localization are of only secondary
interest. The main features of the brain still seem to be adequately
described by the general topclogical structure shown in Fig. 1. The
""central integration and control network' indicated in the diagram is known
to possess some important internal demarcations in higher arganisms, but
the precise functions of these parts and their interrelations is still largely
speculative. In simpler brains (crustacea, for example) the gross
organization is probably no more complex than indicated by the diagram;
and it seems likely that in general it is the fine structure, rather than the

gross anatomy, which determines the functional properties of the network.
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3.1.4 Innate Computational Functicns

There is no doubt that mechanisms of considerable complexity,
sufficient for perceptual tasks and the control of organized behavior, can
be created by genetic control of growth and maturation. This is most
dramatically evident in the instinctual patterns of insects (for example,
the well known communication systemn of bees, and the frequently cited
behavior patterns of carpenter wasps), but is also clearly present in
vertebrates (e.g., the spawning behavior of salmon, and the migratory
behavior of birds, as described in Ref. 90). Recently, Gibson and Walk
have furnished clear experimental evidence for the innate perception of

depth in mammals (Ref. 24). All of these phenomena require "built-in"’

control mechanisms, of a rather intricate sort: In the cases just cited,
these built-in.mechanisms are not known in any detail. A number of more
elerﬁentary’functions have been discovered, however, which prov'ide some
picture of the types of "'computational mechanisms" which are likely to |

exist throughout the central nervous sytem.

The stimulus analyzing mechanisms discovered by Lettvin and
associates for frog vision have already been mentionedik In these studies, it
is found that certain ganglion cells in the frog retina respond only to contours
or strong contrast gradients within their sensory field; others respond only to
convex images; others to moving boundaries; and still others to a general
dimming of illumination over their entire ficld. Each of these four cell types

transmits its information to a distinct layer of the frog's tectum, where its

position is mapped topographically. Thus, one layer represents a contour

U
S

Other visual analyzing mechanisms have recently been demonstrated by
Hubel and Wiesel (Ref. 113) in the cat's cortex (see Chapter 23).

-43-




map, or outline drawing of the stimulus field, another represents a locaticn
map for small convex objects or corners, a third represents movement

vectors, and a fourth indicates regions of dimming illumination.

At the motor-control end of the nervous system, a number of
reflex arcs and servo-control systems have been analyzed. The pupillary
reflex, for example, has been analyzed as a typical servomechanism by
Stark and Baker (Ref. 96). A considerable amount of work has also been
done on the cerebellar servomechanisms which regulate muscular action
under the control of cortical decisions and kinesthetic feedback information
(c.f. Ruch, Ref. 89). It is probably safe to assume that similar closed-loop
control systems, employing familiar servomechanism principles, are
employed throughout the central nervous system for such purposes as
controlling level of a¢tivity, preventing runaway excitation phenomena
(such as occur in epileptic seizures), and regulating sensitivity to selected

aspects of the sensory input data.

It is worth noting that most of the specific computing mechanisms
used in muscular control appear to be of an analog variety, rather than digital;
they make use of intensities and frequencies of activity for the direct control
of servo-systems, rather than computing a control formula from encoded
data and then generating the control signal required. The stimulus analyzing
mechanisms found by Lettvin, however, constitute a sort of digital code, in
which stimulus properties are represented by presence or absence of signals
from particular neurons. It seems likely, as von Neumann has observed
(Ref. 105) that the brain makes extensive usec of both digital and analog
principles in its operation, and it appears that both types of devices may

be genetically determined.
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An interesting example of theoretical speculations on possible
computational functions employed in shaf;e discrimination in the octopus can
be found in Sutherland (Ref. 98). Sutherland reviews several alternative
theories, and presents evidence in support of his own conjecture that the
octopus responds to an analysis of the horizontal and vertical dimensions
of the stimulus measured along all possible cross-sections. No attempt is
made, however, to tie the computational process to a particular neurological
structure, or to indicate a mechanism which might carry out the indicated

operations.

3.1.5. Phenomena of Learning and Forgetting

Thus far, we have concentrated on the anatomical and physio-
logical features of the nervous system which appear to be basic for the
design of a brain model. We now turn to some of the behavioristic and

psychological functions which a brain model should be able to demonstrate.

Phenomena of retention and adaptation in organisms have been
studied in a variety of experiments, varying greatly in their design. In
traditional usage, "'memory'" experiments have been concerned more with
the retention and recall of experience, while '"learning' experiments are
concerned with the acquisition and modification of behavior. Both types of
investigation, however, are concerned with lasting modifications in the state
of the organism, and in complicated problems (e.g., those involving
"insight'') one tends to merge into the other; accordingly, all of these

experiments will be considered together in this discussion.
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Quantitative studies of learning and memory in psychology
stem from the classical experiments of Ebbinghaus, in 1885, on the learning
and retention of nonsense syllables. Using himself as a subject, he obtained
learning and forgetting curves, and demonstrated many of the phenomena of
recognition and retention which have interested psychologists ever since.
Related phenomena have been studied by Bartlett (Ref. 5 ) using more highly
organized material. A second type of experiment, the conditioned reflex
experiment, first employed by Pavlov, is characterized by the association
of an existing response to a new stimulus, which did not evoke the response
prior to the conditioning procedure. A third type of experiment, employed
originally by Thorndike and recently studied extensively by Skinner and
others, is concerned with the learning of a pattern of behavior which is
instrumental to the solution of a problem, or which satisfies a drive.
Where such problem-solving behavior appears to depend in a crucial way
upon a ''cognitive restructuring' of the situation, or the formation of a new
""concept'', we have an experiment in "insight' or ''concept formation', as

in the studies of the Gestalt psychologists.

It is possible that these three types of experiments are actually
demonstrating fundamentally different mechanisms of learning. The first
deals with recognition and recall of previous perceptual experience; the
second is concerned with the generalization of responses from initial
stimuli to new stimuli by virtue of temporal association; the third is
concerned with the discovery and establishment of problem-solving behavior.
Still other experiments deal with such phenomena as short-terin memory

span, acquisition of needs and motives, attitude formation, perfection of 2
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motor skill, or léarning to make fine perceptual judgements. Undoubtedly,
the same physiological processes are tapped in many of these tasks; on the
other hand, attempts at subsuming all of them under a set of general ""laws
of learning" does not seem to be particularly helpful for our present purpose.
From the standpoint of brain model construction, it seems safest to regard

each type of learning experiment as a distinct problem, with its own variables

and rules of behavior which we hope that our model will duplicate under

equivalent experimental conditions. The main value of such psychological

experimentation, then, is to provide us with a set of ''calibration experiments',
by means of which a model can be compared with known organisms under well
defined conditions. The reader who is unfamiliar with the literature of
learning experimentation will find the reviews by Hilgard, Brogden, and

Hovland (in Ref. 112 ) varticularly helpful.

In a number of experiments, attempts have been made to find
the actual physiological correlates of the learning or memory phenomenon.
Notable among these are the experiments of Penfield (Ref. 68), who finds
that electrical stimulation of selected points on the cortex may evoke long
and vivid sequences of past experience, apparently with hallucinatory clarity.
John (Ref. 39) has recently reviewed experiments in cortical conditioning, and
reported a number of interesting results of his own, which suggest that
memory may involve modification of the connections between the deep centers
of the brain stem and the cerebral cortex, with the reticular formation playing
a particularly significant role. The experiments of Olds (Refs. 64, 65, 66)
on the reinforcing effects of electrical stimulation applied to certain points
in the hypothalamus and adjacent structures suggest that these may be
involved in the motivational aspect ¢f learning. Such experiments, which
have only recently become possible through the improvement of electro-
physiological techniques, are likely to become increasingly valuable as

guides to theory construction.




3.1.6  Field Phenomena in Perception

Early studies of perception were largely concerned with the
absolute question of what perceptions are made of; such studies were
concerned with range and sensitivity of sensory abilities, measurement of
limits and thresholds, and the detailed dissection of sensory stimuli into
fundamental components. Such studies form the main subject matter of
classicial psychophysics. In psychology, they gave rise to an atomistic
approach (reaching its utlimate expression in the work of Titchener) in
which it was proposed that any phenomenon of perception could be accounted
for by a proper compounding of sensory elements, each of which retains its
own identity, like a piece of tile in a mosaic. During the last few decades,
largely under the influence of the Gestalt psychologists, studies of perfception

have turned from the question of the constituents of perception to the question

of the conditions under which a given perception occurs. It is now genefally
accepted that what is perceived depends not only upon the properties of the
stimulus object, or image, which is recognized, but upon the organization
of the entire sensory field in which it is embedded. This is true not only

in vision. but in other sensory modalities as well.

The field phenomena which have been studied include the effects
of contrast, figure-ground organization, frames of reference, depth perception,
size constancy, and illusions. The reader is referred to Keoffka (Ref. 44 )
and Gibson (Ref. 26 ) for detailed discussion of these topics. For present
purposes, the most important implication of this work is that a physical
model for a perceiving system must permit the interaction of all elemuv its
in a spatially organized field. It is not sufficient simply to detect sets of

elements which represent a '"pattern'; the perception of a pattern, and the
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interpretation of it, depends in a fundamental way on metric relationships

to other sense data from the same modality, and correlations with sensory
data from entirely different modalities. The perception of a line as "upright',
for example, depends on its observed angles relative to visual standards of
"uprightness'', such as the corners of a room, and also upon the gravity
senses and kinesthetic data which provide a frame of reference for "up"

and '""down'". The decision that two disjoint patches of illumination represent
parts of the same object rather than different objects depends upon their
contrast or resemblance to the field structure around therh, as well as on
their relationship to one another. It is possible (as Gibson has suggested)
that recoghition is never ac}.lieved,.in biological systems, by fhe representation
of a particular receptor configuration, but only by the representation of sets

of relations {angles, rafiosl, etc.) as its elementary data. If this is tHe

case, a suitable set of analyzing mechanisms, capable of measuring such
variables must be included in the pre-recognition tracts of a brain model.

As our models gain in sophistication, it is, in fact, becoming inc'r.easingly
apparent that such analyzing mechanisms are essential for purposeé. of

efficiency and economy of design.

The perceptrons: to be considered initially will not possess
intrinsic field-organization properties. With the introduction of cross-
coupled systems, such properties hegin to emerge. An evaluation of
these systems by means of typical ""Gestalt perception experiments'' has
barely begun at the present time, but represents one of the most important

tasks to be undertaken.
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3.1.7 Choice-Mechanisms in Perception and Behavior

Selective attention and ''set' are fundamental phenomena in
the control of psychological activity. They indicate mechanisms for
choosing between alternative courses of action, or points of view, and
play a logical role analogous to the selection of different branches in a
"flow diagram'' of 2 digital computing routine. Attention and psychological
set are largely determined by the situational context in which behavior
occurs, and by the current "goals" or "purposes'' of the organism, which
may be thought of as choices of a superordinate sort, under which sub-
decisions are made to select particular modes of activity. For example,
an individual who is set to look for a word in a dictionary will be most
attentive to the sequence of letters in boldfaced type, while someone who
is looking for torn pages will probably be unaware of the particular letter
combinations, and someone who is simply scanning the volume to look for

f;ictures 1s apt to notice neither the spelling nor the condition of the

pages.

The importance of set, or attitude, for learning has been
emphasized by Hebb (Ref. 33), but choice mechanisms of this type have
rarely been incorporated in the detailed design of theoretical brain
models. In purely logical models of behavior, they play a considerabl&r
more prominent role -- for example, in Tolman's learning theory, and
in Newell and Simon's models for problem solving behavior (Refs. 62, 63),
selective choice-mechanisms are specifically designated. In a brain
model, it is clear that such phenomena must be closely related to the

problem of "temporary memory', since the set under which the brain
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is currently operating must be represented by a temporarily stable, but
nonetheless readily altered, state of the system, capable of modifying
processes which go on while it persists. It seems likely (although un-
supported by any direct evidence) that pools of neurons connected by
reverberating circuits may be important set-maintaining devices in the
nervous system, exerting their influence on the brain as a whole by
means of a widely distributed barrage of sub-threshold excitation or

inhibition. The plausibility of such mechanisms will be considered in

more detail in a later chapter.

S8 Complex Behavioral Sequences

The discussion of psychological sets and choice mechanisms
brings us to a consideration of even more highly organized behavior and
thought patterns, such as the steps taken in performing an arithmetic
computation, or driving to work, or performing a piece of research.

All of these activities represent orderly sequences of decisions and action,
and can be considered, as Newell and Simon have suggested, as programs
to be performed. In some cases, these programs are highly stereotyped,
and determined by rigid rules; in other cases, they employ chance
mechanisms and heuristic procedures. Much of the classical psychological
literature on problem solving and insight is relevant to this second class

of programs, while a rat running a maze might be considered an example
of the first type. As in the case of selective attention and set, these
problems have not been dealt with in detail by any brain models proposed
to date, but it seems likely that at this level the brain and the computer

begin to approach a common meeting ground. Problems of memory span,
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storage, and sequence control are present in both types of systems, and
many of the logical problems confronted in "heuristic programming"
{Refs. 60, 62, 63 ) seem to be direct translations from human problem-
solving experience to the language of computing machines. This does

not mean that the physical structure of a brain model must ultimately
resemble that of digital devices, but rather that the same basic logical
organization -- a memory for programs, a memory for data, and a
mechanism for the sequential performance of a given program -- must be
available. The '"programs' themselves presumably take the form of
sequences of selective sets, or bias states, arranged in a heirarchical
manner, so that sub-operations are performed under the control of a
""master set' or ''master program' which determines the overall plan of
activity. While the detailed properties of such systems must necessarily
remain speculative at the present time, we shall see that such a concept
1s compatible with the organization of perceptrons not too far removed

in complexity from those which we are now capable of analyzing.

St Current Issues

While the discussion of the preceding section has attempted
to stick to a relatively conservative and uncontroversial rendition of
physioclogy and psychology as it applies to the brain model problem, it
1s clear that in the last pages we have been drawn into increasingly
speculative and uncertain areas of discourse. In this“section, an
attempt will be made to highlight a number of issues which seem most
salient in determining the fate of various brain models, and which are

not answerable at the present time outside the realm of speculation.
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Of necessity, a physical model will have to take a stand on most of these
issues, and it is possible that by investigating the logical consequences of
such a stand, a decision as to the plausibility of various alternatives might
be made; the brain model approach has a chance, here, of providing answers
which empirical studies have so far been unable to discover. In any event,

the decision taken on these issues represent the points at which a brain

model is most vulnerable to future attack, as new evidence is uncovered.

SISA | Elementary Memory Mechanisms:

The status of current information on basic memory mechanisms
in the nervous system has been reviewed recently by Burns (Ref. 13). Most
brain models employ some memory hypothesis, but evidence as to the nature
cf actual physiological mechanisms which might be involved is almost
totally lacking. It is generally agreed, simply on the basis of definition,
that whatever we call "memory' involves a modification of neural activity
in the central nervous system or its output signals, as a function of
exposure to previous events or ''experience'. In some models, this
modification has been attributed tu persistent activity in closed loops of
neurons, but most theorists are now agreed that, while such a memory
mechanism might account for ''short term memory', and might play a
significant role in the establishment of more permanent memory traces,
there must also exist a non-volatile memory mechanism (e.g., a
structural or chemical change) which can outlast periods of neural in-
activity, and is relatively insensitive to transient activity in the nervous
system (see Hebb, Ref. 33, pp. 12-16). The nature of this memory trace

mechanism, it is generally agreed, must be such as to facilitate the use
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or selection of neural pathways which have been active at the time of the
""remembered' experience or behavior, and virtually all specific models
assume that it takes the form of a facilitation of connections between sources
of excitation and responding neurons in the motor system or CNS. In
making such an assumption, the influence of the conditioned reflex model,
which suggests that sensory neurons become coupled to association neurons,
by which they are connected to motor neurons, is clearly evident. An
alternative position, in which the preferred pathways '"win out' by surviving
deteriorative changes in unused pathways, rather than by active facilitation,
has not been explored to any significant degree, but appears to be logically

similar to its potentialities.

Granting that the memory mechanism takes the form of some
means of selecting particular patterns of activity in preference to others,
depending upon the input or current state of the nervous system, particular
physiological models include: (!) mechanisms for reconstituting past activity
states of the entire CNS or a major portion of it; (2) mechanisms for selecting
particular output channels as a function of current activity or sensory inputs.
The specific mechanisms proposed generally fall into one of the following

four categories:

(1) Extracellular influences and modification of the neural medium:

This has been proposed by Kohler (Ref. 45), Bok (Ref. 8), and others, who
assume that, if a "'structural trace' is present at all, it is not laid down 1r1
specific neurons, but in the surrounding medium, where it is capable of
modifying activity in nearby neural tracts. The possible form that such

a mechanism might take has never been specified in detail, and the approach

is generally discourted by current theorists. The motivation for such a
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hypothesis comes in part from attempts at preserving the isomorphism
between a spatially distributed memory trace and spatially organized

visual events, as in Kohler's system. While it is not implausible to assume
that the surrounding medium participates in the memery trace structure,

it seems likely that such interaction between medium and neurons would

be highly localized, probably influencing orly a single neuron or synaptic
junction, rather than forming a widespread organized structure independent
of the neuruns themselves. If such a position is accepted, then whatever is
left of this approach can be subsumed under one ;)r another of the remaining

neural modification mechanisms.

(2) Threshold Modification: The hypothesis that the threshold

of an active neuron may be reduced as a consequence of the activity, thus
making it more likely that this cell will respond to future stimuli, has
frequently been proposed as a possible memory mechanism (c.f., Taylor,
Ref. 99 ). If we take the ""threshold", in its conventional sense, to mean
the degree of membrane depolarization or the level of input excitation
which will cause the neuron to discharge, regardless of the particular
synapses involved in the transmission of excitation, then this model

meets two main objections: first, the sensitivity which is vauired-iS.non-
spetific, making it more likely that the cell will respond to any input, rather
than just those which were effective at the time that the memory trace was
established; second, after a long history of activity; we would expect the
thresholds of all neurons to be reduced to a minimum level, unless some
recovery mechanism exists. If such a recovery mechanism does exist,

memory will tend to be lost as a consequence, and it. must be shown that

-55.




the rate of forgetting would not vitiate the value of the system. Occasionally,
the concept of '""threshold reduction' seems to be used in the sense of an

increase in specific sensitivity of a neuron to a particular afferent fiber.

In this case, the threshold reduction mechanism becomes indistinguishable

from a synaptic facilitation mechanism, which is considered below.

(3) Strengthening of active neurons: Eccles (Ref. 18), Uttley

(Ref. 102), and Rosenblatt (Ref. 79) have proposed models in which the
output signals of a frequently active neuron gain in strength or effectiveness,
affecting all terminals alike. This model retains the specificity of response
of a neuron (unlike the threshold reduction model) but increases its power

to activate fhe neurons which follow it in series. If the o'titput signal from

a neuron goes to a single destination only, this is equivalent to a model which
strengthens particular synaptic connections. If the output goes to a number
of different locations, however, there is a lack of specificity in the channel-
selection properties of this mechanism, which must generally be offset by
auxiliary hypotheses. In Rosenblatt (Ref. 79) it is shown that by means of a
suitably organized feedback mechanism, a particular output channel can be
selected through a statistical bias. The feedback guarantees that these cells
which are reinforced all have at least one ''desirable' output connection, the
other connections being distributed at random among a large number of
alternative terminali neurons, each of which consequently receives only a
fraction of the total reinforcement applied. While such a model is shown

to be logically workable, the specitic feedback connections required make

it physiologically implausible, and it remains less efficient than a model

in which specific synapses, rather than total neurons, are selected for

modification.
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(4) Modification of selected synapses: This model has been

employed by Culbertson (Ref. 17), Hebb (Ref. 33), and others, and is
employed in most current perceptron models. The mechanism takes account
of the correlation of activity between an afferent synapse and the efferent
neuron, augmenting the strength of the synaptic ending (or, equivalently,

the sensitivity of the sub-synaptic membrane) if the correlation is positive,
and, in some cases, diminishing it if the correlation is negative. The
actual physiological process by which such a correlation might occur is
obscure, but the logical advantages of such a mechanism are clear. Hebb
has proposed that actual synaptic growth might occur, improving the contact
between the transmitting and receiving neuron. While Eccles has considered
possible synaptic growth mechanisms in some detail (Ref. 18 ) there is little
evidence to support this conjecture. A possible biochemical mechanism has
been proposed by this writer (Ref. 83), which assumes that large molecules
used as catalysts for the production of transmitter substances in the endbulb
must originate from the nucleoplasm of the post-synaptic cell, and that the
exchange of these molecules is facilitated by membrane depolarization and
periods of activity in both cells. An alternative possibility, in which the mem-
ory mechanism is entirely contained within the post-synaptic cell, is

that a persistent sensitization of the subsynaptic: membrane in the neigh-
borhood of an active synapse occurs, given the hvpermetabolic state which
follows activity. The facilitation of a neuron's response to repeated sub-
threshold signals which has been reported by Bullock (Ref. 11) indicates

that a localized persistent effect of the sort hypothecated does exist; it
remains to be shown that the subsequent firing of the neuron may serve

to ""stamp in'", or fix in a more permanent manner, the temporary sensi-

tivity which has been observed.
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The evaluation of a particular memory hypothesis must depend,
at this stage, upon its logical power when employed in specific brain models,
as well as its physiological plausibility. The mechanisms which are consi-
dered in this report have been selected for their simplicity and their demons-
trated ability to yield interesting behavioral results. They suggest plausible
directions in which to look for a physiological mechanism, but it remains
possible that the actual mechanisms employed by the brain may be of a drasti-

cally different sort. It is fundamental to this approach, that any lasting

change in the system, whatever its physical form, may act functionally as a
memory trace. It seems likely that there is not a single memory mechanism,
or even only two memory mechanisms at work in the brain, but rather a
great number of dynamic processes, ranging from temporary facilitation

and fatigue effects to permanent structural changes, all of which contribute

in some way to the observed psychological phenomena called '""memory'.
Among these processes, it is likely that one or two play an outstanding role,
but likely candidates have not yet been found, and in the meantime, it seems

wise to retain an open mind on the entire question.

3.2.2 Memory Localization

There is hardly any more agreement on the question of where

memory traces are to be found (in the gross anatomy of the nervous
system) than there is on the question of what they consist of. Lashley

(Ref. 49) was largely responsible for the emphasis on '"distributed memory"
among many theorists over the last few decades, and Sperry (Ref. 95) has

contributed a number of experiments which indicate that the residual

_58-




effects of learning must be widely dispersed throughout the brain. On the
other hand, Penfield (Ref. 68) has shown that specific recall may be evoked
by stimulation of specific selected points in the cerebral cortex. E. R. John,
in a model which is supported by a certain amount of experimental evidence
(Ref. 39), proposes that the memory traces are distributed between the
thalamus and cortex, involving reverberating circuits and feedback loops
between these two regions rather than being localized in one or the other of

them.

The question of localization is of less importance for a functional
model of the brain than is the question of mechanism; as long as we assume
that it is the network topology, rather than the actual anatomical position of
neurons, which is important in determining the brain's logical properties,
there is no reason for requiring that a brain model resemble the biological
system in its spatial organization. The indirect implications of the different
theories of localization are of considerable importance, however. For one
thing, the view that the brain contains its memories in a widely dispersed,
intermingled form, suggests a mechanism in which the same cells parti-
cipate in a great variety of different, and perhaps totaly unrelated, memory
organizations. A model which can separate distinct memories from such a
multiply overwritten system will be quite different in character from one in
which each remembered event is stored in its own distinct location. For
another thing, the apparent complexity of memory-sites which may interact
in the recall of a single experience or association (as emphasized in John's
work) impresses us with the poseibility that human memory may be a
product of a number of related processes and mechanisms, perhaps
acting in a complex sequence of cause-and-effect, rather than a simple

correlation of inputs and outputs.
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Again, we are stuck with the necessity of simplifying for
lack of detailed knowledge. While it is likely that memory and recall in
the human nervous system involves the coordinated activity of several parts
of a complex structure, we will attempt, at the outset, to see what psycho-
logical properties can be duplicated by a system in which memory is located
in a single set of connections, with a minimum of structural differentiation.
As perceptrons are elaborated into more highly structured models, the
question of which connections shouid be allowed to participate in memory

processes will be reconsidered, and alternative systems will be irnivestigated.

3.2.3 Isomorphism and the Representation of Structured Information

Lashley, Kohler, Greene, MacKay, and others (Refs. 28, 45, 50,
55, 56, 110) have dealt with various aspects of the problem of isomorphism
between the representation of an event in the central nervous system and the
physical structure of the event in the outside world. In the naive isomorphism
of Kohler, it is required that the representation in the brain should actually

have a spatial structure resembling the thing that it represents; in the more

sophisticated form advocated by Greene, it is sufficient that the represen-
tation should have a logical structure (not necessarily spatial in its physical
manifestation) which permits it to be broken apart, dissected, and reassembled
by suitable manipulations or attention-directing processes, in a way which is
related to the parts, surfaces, or aspects of the real-world phenomenon.

While some such structural representation seems to be inescapable in

human perception, thinking, and imagery, the exact form that this might

take is again almost totally unknown. This is essentially the problem of
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determining the code employed by the brain in its representation of
perceptual phenomena. We know that the code is one which enables us to
recognize parts, relations, symmetries, and other organizational features
which might be lost in a completely arbitrary representational system (such
as a code which assigns binary symbols, in sequence, to all stimuli, and
then lists all of those which are to be considered as '"similar'). We also
know that there are parts of the brain (the sensory projection areas) in
which actual spatial organization of stimulus patterns is retained. We do
not know, however, how far the representational code must go in the
direction of spatial isomorphism in order to account for the organizational
properties of experience. As usual, we shall begin with a simplification
which assumes an unstructured coding, but it seems likely that this will have
to be abandoned in order to deal with problems of figural representation,
perception of relations, and other ''gestalt problems'. An attempt will be
made in this report, however, to show that the required structuring for
some of these problems may be acquired by adaptive processes and need

not superficially resemble the phencmena which are represented.

3.2.4 Adaptive Processes in Perception

Much of the theoretical work on brain models (Hebb, Hayek,
etc.) has been concerned with processes by which complex perceptual
organizations can be "built up' out of sensory fragments, by a process
of learning or association. Consequently, the question of adaptability,
or modifiability, of perception is of paramount importance as a guide in
model construction. The history of this problem has recently been

reviewed by Hochberg (Ref. 34). Studies of "perceptual learning' have
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been concerned (1) with the organization of given perceptual elements
into "concepts', or "kinds of objects', and (2) with the modification of the

perceptual elements or '""impressions'' themselves.

(1)The first type of experiment is concerned with the discrimi-
nation, rather than the ""appearance' of stimuli. It is clear that much
recognition and discrimination, as in the learning of speech sounds in a
new language, is highly dependent upon learning. Such processes typically

involve differentiation, rather than synthesis of complex patterns out of

readily identified parts. Another, important part of perceptual concept
formation is concerned with associating, or classifying readily discrimin-
able patterns or symbols having the same significance (such as a Roman,
italic, and script form for the letter "A'"). (2) On the other hand, there

are a number of studies coﬁcerx)ed with attempts at modifying the seemingly
‘intrinsic "appearance' of the stimulus itself. Such experiments are not
concerned with refinements in discrimination or assignment of appropriate
names to stimuli; they are concerned witih re-structuring the sensory. data
Cata considerably more '"primitive' level. Such experiments include
studies of figural aftereffects (Ref. 25), ambiguous figures (Ref. 107)

the effect of memory upon color perception (Ref. 10), and the various
experiments performed with inverting prisms to determine whether a
human subject could learn to perceive normally with an inverted retinal
field. Work with animals reared in darkness and exposed to the light

for the first time in various test situations has been reported by Riesen
(Ref. 75 ) and Gibson and Walk (Ref. 24) have conducted experiments with
infants and newborn animals to determine whether depth perception is
possible prior to learning. Other data have been collected by von Senden for
congenitally blind human subjects to whom sight is restored by surgery

(Ref. 106).
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In general, the conclusions of this work seem to indicate that
while recognition, in the sense of being able to discriminate and assign an
appropriate name to an object, is largely dependent upon experience, the
"subjective appearance' of a stimulus is relatively inflexible, and in some
species, at least,may be innately given by the structure of the nervous
system. Sperry's work with frogs, for example, in which the optic nerves
are cut and then allowed to rejoin with the eyeballs inverted, suggests that
no amount of relearning can compensate for so drastic a change (Ref. 94)
and the Gibson-Walk experiments support the assumption of a highly
developed sense of depth perception in many mammals from birth. To a
much lesser degree, modification of visual images by experience is
possible; generally, this takes the form of persistent {ield interactions
(as in figural aftereffects) rather than a basic reorganization of perceptual
experience. The extent to which perception might be organized by adaptive
processes is currently unknown, and this is one of the main areas in which

theoretical brain models may prove helpful to psychology.

3.2.5 Influence of Motivation on Memory

In psychological learning theories, it is commonly assumed
that a "'drive' or "motive' must be present in order for an animal to
learn. Conditioned reflex experiments, on the other hand, frequently fail
to show any r'elationship between the "motivation state'' of the animal and
the learning process. Speculation about the role of motivation in perceptual
learning has also been quite extensive, and a number of experiments have
been performed, to test the learning of perceptual discriminations or
related tasks on the basis of "mere repetition' as opposed to directed

learning. In these experiments, it is often hard to distinguish between
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"attention'" and "motivation', and the results are generally inconclusive.

It seems that a certain amount of "incidental learning' does indeed occur,
which is not directly relevant to the goal or task of the subject at the time;
the actual degree of motivation, reward or punishment, or "reinforcement"
that may have been involved, however, is impossible to ascertain in any
absolute way. For the brain model problem, it is important to note that

there are some learning situations, at least, in which ""reward and punish-

ment' can be used to control the acquisition of new responses; whether or
not this is universally the case, and the actual physiological mechanisms
involved, remain open questions at this time. It should be remembered,
however, that any brain model which relies on the intervention of an outside
agent or experimenter to direct the learning process is implicitly taking a
stand on this issue. A possible compromise is found in the approach of
Ashby (Ref. 3) where the brain is described as a complex homeostatic
organization, in which particular "crucial variables' are capable of
triggering random changes in organization if they exceed critical limits;
stabilization of behavior, in such a system, is not a result of learning
from reward, but is due to the cessation of disruptive changes which occur
when the system makes a mistake. The main difficulty in making use of
this approach is in guaranteeing that changes are sufficiently specific and
well-directed so that the organism achieves its new behavior pattern in an
economical and relatively direct fashion, rather than going on a random
walk through all possible alternatives before arriving at the required "

solution.

-64 -




3.2.6 The Nature of Awareness and Cognitive Systems

While it has been relegated by many theorists of the realm of
philosophy or semantics rather than science, the question of the nature of
consciousness or awareness keeps recurring in the literature. Current
physiologists and psychologists represent the whole range of philosophical
positions on this subject. For Eccles (Ref. 18 ) there is a conscious
"mind" which controls the body by acting upon the nervous system. For
Penfield and Jasper, awareness is a state of the nervous system involving
heightened sensitivity and improved coordination, under the control of the
centrencephalic system, and particularly the reticular formation (Ref. 38 ).
John (Ref. 39) suggests that "awareness may be a property arising from
the process of 'cortico-reticular resonance''. For Culbertson (Ref. 17),
consciousness is a property of trees of causal relations which tie together
the events of the external physical world and the neural events in the
brain. Lotka (Ref. 53) has suggested that we look to the world of molecular
events for an explanation, and that consciousness involves particular

unstable states of molecular or atomic particles.

To this writer, it secems likely that the question of the ''nature
of awareness' can be bypassed, in much the same way that we bypass the
question of the '"nature of perception', by concentrating on the experimental
and psychological criteria which may be used to distinguish the actual
phenomena in question. When a subject reports that he is '"conscious' or
that he was recently "unconscious', we are led to believe him or dis-
believe him on the basis of his behavior, and what he is able to report

about the content of his '""experience' at the time in question. From an
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operational point of view, the fact of '"consciousness' is closely connected
with the accessibility of information and its ability to influence overt
behavior; it is, in fact, meaningless to say that an individual is ''conscious"
unless there is something that he is conscious of.  The questions which can
be asked concerning this phenomenon in a theoretical brain model (where we
are not free to assume any intrinsic similarity of processes to those in the
human brain) are questions of what can be discriminated, "seen', "attended
to", or ""remembered' under specified conditions. All that we can say,

in the last analysis, is that the system acts éf_if it were conscious, leaving

the question of the actual existence of consciousness in the system for

metaphysicists to consider.

Systems which represent information internally, in such a way
that it can be utilized for the control of certain kinds of responses (such as
running, thinking, or talking) will be called cognitive with respect to the
realm of information which is represented and the class of responses which
this information controls. Note that this term is used in a relative, rather
than an absolute sense. Thus the representation of information in the form
of an image on the retina is not sufficient to permit us to say whether or
not the organism is cognitive with respect to its visual environment; we
must also demonstrate that this information is accessible to the organism
for the control of some specified set of responses. We might say, for
example, that a man who antomatically stops for a red light, but is
unable to state afterwards why he stopped is cognitive with respect to
red signals at the level of overt motor-responses, but not at the level

of verbal recall. Conversely, an unskilled pianist may be cognitive with
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respect to errors in his performance at the verbal level, but not at

the motor control level. We use the term cognitive, then, to indicate

that knowledge of some realm of information is accessible for the control
of some specified class of responses. This usage permits us to reserve
judgement on the definition of such phenomena as perception and awareness,
.and still to recognize a class of psychological phenomena involving the

accessibility of information, with which we shall be concerned.

3.3. Experimental Tests of Performance

The purpose of a theoretical brain model is to demonstrate
how psychological phenomena can arise from a physical system of
known structure and functional properties. In the preceding sections of
this chapter, we have reviewed the physiological data which suggest the
general form of the model, and the psychological data against which its
performance must be measured. We now turn to a more specific consi-
deration of the psychological tests which might be a[ﬁplied to a brain model
in order to evaluate its performance, and to compare alternative systems

with one another.

3.3.1 Discrimination Experiments

In the simplest type of experiment which can yield psycholo-
gically significant information about a system, two distinct stimuli are
presented to the model, which is required to respond differentially to
them. In the general case, it is not necessary to limit this experiment

to two specific stimuli or sensory patterns; two or more classes of
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patterns may be employed, each class consisting of '"'similar'' patterns,
such as squares, or triangles, or various sizes and styles.of the letter ""A'".

This experiment may be performed either to look for spontaneous discrimi-

nation by the system, in the absence of intervention or guidance by the

experimenter, or to study forced discrimination in which the experimenter

attempts to teach the system to make the required distinctions. In a
learning experiment, a perceptron is typically exposed to a sequence of
patterns containing representatives of each type or class which is to be
distinguished, and the appropriate choice of response is ""'reinforced"
according to some rule for memory modification. The perceptron is then
presented with a test stimulus, and the probability of giving the appropriate
response for the class of the stimulus is ascertained. Different results will
be obtained, depending on whether or not the test stimulus is chosen to
correspond identically to one of the patterné which were used in the

training sequence. If the test stimulus is not identical to any of the training
stimuli, the experiment is not testing "pure discrimination', but involves
generalization as well. If the test stimulus activates a set of sensory
elements which are entirely distinct from those which were activated in
previous exposures to stimuli of the same class, the experiment is a test
of "pure generalization'. The simplest of perceptrons, which will be
considered initially, have no capability for pure generalization, but can

be shown to perform quite respectably in discrimination experiments
particularly if the test stimulus is nearly identical to one of the patterns

previously experienced.
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3.3.2 Generalization Experiments

As indicated above, a pure generalization expériment is one
in which the brain model, or perceptron, is required to transfer a selective
response from one stimulus (say, a square on the left side of the retina)
to a "similar'" stimulus which activates none of the same sensory points
(a square on the right side of the retina). Generalization of a weaker sort
may be demonstrated if we simply require the system to transfer a
response to members of a class of similar stimuli, which are not necessarily
disjoint from the one which has been seen (or heard or felt) before. As in
the case of discrimination experiments, it is possible to study either

spontaneous generalization, in which the criteria for similarity are not

supplied by an outside agency or experimenter, or forced generalization,
in which the experimenter's concept of similarity is "taught' by means of
a suitable training procedure. Some of the most significant problems in
brain mechanisms concern generalization phenomena, and particularly
the meaning of "similarity' for a particular kind of system. In common
with a number of other theorists (e.g., Pitts and McCulloch, Ref. 71),
this writer will assume that similarity is primarily determined by a
group of transformations which stimuli may undergo in a particular
physical environment. In the normal physical environment, for visual
stimuli, this would include rigid motions, rotations, size changes,
projective transformations, certain types of distortions or continuous
deformations, and changes in color or contrast. A number of more
subtle forms of similarity (as in styles of architecture, gestures and
mannerisms, etc.) are presumably due to association of events into
classes at a higher level of organization than we are concerned with at

this point. It should be noted, however, that a perceptron which is taught

-69-




to form arbitrary classes of stimuli might be expected to generalize

along completely arbitrary or abstract dimensions, ''similarity of style"
being as legitimate a candidate for a basis of classification as '"similarity

of shape'. In the simple perceptrons, we will find that '"pure generalization"
does not occur, although an apparent generalization of responses to stimuli
which share many sensory points with those previously experienced can be
demonstrated. In this report, this weak form of generalization will be
considered under "discrimination phenomena', the term 'generalization"

being reserved primarily for cases in which mechanism for recognizing

actual similarity, rather than a rough approximation to identity, is involved.

3.3.3 Figure Detection Experiments

In the experiments considered above, two or more kinds of
stimuli are always employed, in order to avoid the trivial case in which
the desired response is automatically evoked by any stimulus that might
occur. Since it is assumed that at each moment of time exactly one
stimulus is present, these experiments represent a 'forced choice"
situation, in which the brain model is obliged to give one of several
positive identifications in response to whatever it ''sees''. Such experi-
ments have their counterparts in animal and human experimentation,
and permit the study of an important class of psychological problems,
involving simply structured situations. An alternative approach, which
has been less studied to date, is to give the system the task of searching
for a particular figure in a sensory field which may or may not contain it.
In this case, the system is asked to discriminate between 'figure present"

and "figure absent', and is typically only instructed in the recognition of
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one figure at a time. If the figure appears as a solitary object in an
otherwise empty field, the task is a relatively trivial one. If the figure
appears against a background, or as part of a con:plex of other patterns,
the problem takes on a new aspect of complexity. In the most important
case, this experiment permits us to study figure-ground organizing
tendencies in a perceptron, by presenting it with embedded, or ambiguous
figures which can be recognized as representing one thing if the field is
appropriately structured, and a different thing if the field is structured
differently. The Gestalt properties of ''good figure' are supposed to
determine the preference of a human observer to perceive one or another
of the possible figures in such a field. Detection experiments per mit us
to compare the preferences and rules of '"good figure' in a perceptron
with those of human subjects, in controlled situations. Perceptrons
considered to date show little resemblance to human subjects in their
figure-detection capabilities, and gestalt-organizing tendencies. In Part IV
of this report, some speculations concerning the development of such

properties in more sophisticated perceptrons will be presented.

3.3.4 Quantitative Judgement Experiments

Another type of experiment with which little work has been
done to date involves the estimation of quantitative properties of stimuli
(size, distance, position,etc.) by perceptrons. It will be seen that simple
perceptrons are capable of learning to represent stimuli by a continuously
variable ''analog' type of response. No work has been done to date, however,
to investigate such questions as the generalization of quantitative judgement

to new stimuli, or the accuracy which can be achieved in specific cases.

-71-




For more advanced systems, an important problem which must ultimately
be faced is that of "'perceptual constancies': the tendency in human subjects
to perceive size, color, or other metric properties of a stimulus in terms
of the ""actual' physical properties of the object rather than its projection
on the retina. A man, for example, is perceived to be about six feet tall
regardless of whether his retinal image subtends one degree or fifteen
degrees, and a dish appears to be circular in form regardless of whether
its retinal image is a true circle or an elongated ellipse. It has been
demonstrated in many psychological experiments that such phenomena

are not based simply on familiarity with the particular objects involved;

a completely unfamiliar form, seen in normal physical space, is perceived
correctly, in terms of its "true' physical properties, except under

excepticnal circumstances (c.f. Gibson, Ref. 26).

3.3.5 Sequence Recognition Experiments

In the above experiments, it has been assumed that the stimuli
are fixed, temporally invariant patterns. Analogous problems exist,
involving discrimination, generalization, figure detection, and metric
estimation for time-varying, or sequential patterns of all sorts. While
static organization problems reach their greatest degree of complexity
in the visual modality, temporal organization.becomes comparably
complex in the auditory field. Speech recognition is one particularly
important case to be investigated. Problems include not only the
recognition of particular movements, or sequences, but the segmentation
of movement and sound patterns into figural units,words, or phrases as
well. The recognition of sequences in rudimentary form is well within the
capability of suitably organized perceptrons, but the problem of figural
organization and segmentation presents problems which are just as serious

here as in the case of static pattern perception.
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3.3.6 Relation Recognition Experiments

In a simple perceptron, patterns are recognized before
"relations'; indeed, abstract relations, such as '" A is above B' or 'the
triangle is inside the circle' are never abstracted as such, but can only
be acquired by means of a sort of exhaustive rote-learning procedure, in
which every case in which the relation holds is taught to the perceptron
individually. At the present time, the main hope for the abstraction of
relations seems to lie in systems which are capable of executing a
sequence of observations, according to a predetermined plan, in which
first one member of the related pair is observed and then the other, the
relationship between them being determined by the sequence of ""experience"
during the shift of attention from the first to the second. The problem of
relation recognition is, at the outset, more complex than those previously
considered, since it requires, by its very nature, the ability to recognize
and attend selectively to at least two distinct ""parts'' of a total organization,
specifying, for example, which part is larger and which smaller, or which
part is "outside' and which '"inside'. The hypothesis that relation recogni-
tion involves a sequence, or program,of observation means that it must
make use not only of figure organization capabilities (to separate the
""parts' referred to) but of sequence recognition and sequential control
capabilities as well. The actual experiments by which rélation recognition
can be detected must involve at least two components (such as square and
triangle) which can be shown in such a way as to exemplify the relationship
or not. In an ideal experiment, the system would be trained to recognize
the relation by a number of examples with stimulus patterns or "parts"

which do not resemble or intersect (in their retinal location) the test
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patterns which are employed in evaluating the performance. If the perceptron
can then indicate correctly, for entirely new stimuli, whether or not the

relation holds, it will be considered that the relation has been abstracted

by the system.

3.3.7 Program-Learning Experiments

The learning of sequences of behavior is the counterpart on the
response side of the problem of sequence recognition. The problem has
been discussed in detail by Lashley (Ref. SO)l. It requires, as a starting
point, the ability to form ''selective sets', which introduce a bias to give
one of several alternative responses to a given: stimulus. A capability of
this sort has been shown to exist, to some degree, in relatively simple
perceptrons, provided there is a feedback path from the response units to
the association system (Ref. 79). To date, little has been done to study this
capability in a quantitative fashion, but some of the heuristic arguments will
be reviewed in Chapter 23. One of the most important applications of such
a capability is in the control of the sequential activity involved in recognition
of relations, and the '"perceptual exploration" of a sensory field. Related
phenomena, in which this capability plays a central part, are the sequential
control of speech, thinking, and complex behavior patterns. The represen-
tation of problem solving activity in the human by heuristic programs has
been studied by Newell, Shaw, and Simon (Refs. 62, 63), and it seems
likely that many of their results might be transferred to a perceptron

which is capable of program controlled activity.
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3.3.8 Selective Recall Experiments

While most of the experiments described above involve "memory"
in the sense of a change in behavior as a consequence of experience, they do
not, in general, require substantive recall, of the sort which is displayed h

when we describe a person who we saw yesterday, or the location of furni-

ture in a house where we lived last year. In selective recall experiments,
the system is required to produce on demand information relevant to a
particular time, place, or subject. This involves a particular case of
""selective set' mechanisms, and can probably be demonstrated in most

systems which are capable of program-controlled behavior.

3.3.9 Other Types of Experiments

In addition to the experiments considered above, we might
ultimately wish to consider experiments in abstract concept formation,
the formation and properties of a "'self concept', creative imagery, and
other higher-order psychological phenomena. At the present time, these
problems seem sufficiently remote from the capabilities of present
perceptrons that we need not consider them further here. Also relegated
to the future is the consideration of such psychological phenomena as
perceptual illusions, figural aftereffects, and related phenomena, even
though these have been considered primary in some of the brain models
hitherto advanced. It is this writer's belief that these phenomena are so
likely to depend on inessential details of brain organization, at almost any
level of complexity, that it would be a mistake to try to rest the case for

or against a particular model on a demonstration that it can duplicate a
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particular kinds of perceptual illusion. It seems more important, at this
stage, to account for 'veridical perception' than for its occasional failures,
particularly since these are currently demonstrable in a single species only,

and may lack any generality whatsoever.

3.3.10 Application of Experimental Designs to Perceptrons

The designs considered above have been discussed as if they
were actual '"flesh and blood" experiments, performed with real physical
systems. In the study of perceptrons, it is not always practical or necessary
to carry out such experiments in reality; the important thing is that an analysis

of a given model should always be carried out in terms of an experimental

design which is specified in sufficient detail so that it could be carried out

if the system were actually constructed.

In practise, three main methods are employed in the study of

perceptrons:

(1) Mathematical analysis, in which a stimulus environment,

the rules for stimulus presentation and for the modification of the perceptron's
memory state are clearly specified. The object of such analysis is, in
general, to determine the probability of correct performance, or the proba-
bility of achieving a given performance criterion, for a specified class of

systems.

(2) Digital simulation, in which the perceptron, its environment,

and the memory modification rules are all represented in a digital computer

program, which carries out the required operations of an experiment in




step-by-step fashion, calculating the response of every neuron and connection
in the perceptron, and measures the performance of the system. Such a
program, repeated for a sufficient sample of perceptrons in a class, yields
much the same type of information as is obtained from a mathematical
analysis. It has the advantage of being free from all approximations (which
may be necessary in some analyses) but is less likely to yield important
insights into the lawful relations which characterize a class of systems.
Simulation programs are most valuable as an exploratory device, and for

the study of systems of such complexity that an exact mathematical analysis

1s impossible.

(3) Study of physical models, involving the actual construction

of a hardware device, and the performance of the indicated experiments. At
present, little is to be gained from the study of actual physical models which
cannot be learned from the other two methods, but as successive models grow
in size and complexity, and as means are found for the inexpensive construction
of electronic models, this method becomes increasingly important. Its main
virtue is the flexibility and adaptability of a hardware perceptron to new types
of learning experiments and procedures, and the ability to use ordinary
physical objects and environments as stimuli, which would otherwise involve
a great deal of time and expense in computer programming. The physical
model itself, however, is apt to be less flexible than a simulated system,

and is best suited for ''case studies'' of a single representative system,

rather than statistical studies of a class of systems.
In most of the experiments considered in this report, (which

are listed in Appendix D) human performance capabilities are sufficiently

well known to permit us to draw conclusions about possible comparisons
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between perceptrons and biological systems without further study. In

some of the proposed experiments, however, (e.g., the figure organization
experiments described in 3.3.3) additional data may be required on human
performance in order to obtain a base-line for the quantitative evaluation of
perceptrons. Thus it seems likely that in the near future, a program in
experimental psychology with human and animal subjects may be a necessary
adjunct to the evaluation of our brain models. When this occurs, the models
are, in effect, being used as predictive devices, capable of generating data
(probably grossly inaccurate at the outset) which have not yet been actually
observed in human subjects. The ultimate test for a brain model, from the
standpoint of psychological validity, is an experiment of this type, in which
the model correctly predicts phenomena which have yet to be discovered in

biological systems.
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4. BASIC DEFINITIONS AND CONCEPTS

This chapter is devoted to basic definitions of terms which will
be used throughout the report. It is recommended that the reader familiarize
himself with this terminology in a general way, on first reading, and refer
back to this chapter when the terms are reintroduced in the subsequent text.

A list of standard symbols will also be found in Appendix A.

4.1 Signals and Signal Transmission Networks

The following definitions, which are not specific to perceptrons,

are likely to be helpful:

DEFINITION 1: A signal may be any measurable variable, such as a
voltage, current, light intensity, or chemical concentration.

A signal is typically characterized by its amplitude, time,

and location.

DEFINITION 2: A signal generating unit is any physical element, or device,

capable of emitting a signal. The output signal of the unit

#
(+; will be represented by the symbol «

DEFINITION 3: A signal generating function is any function which defines

the amplitude of the sigi.al emitted by a signal generating

unit.
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DEFINITION 4: A connection is any channel (e.g., a wire or nerve fiber)
by which a signal emitted by one signal generating unit
{the origin) may be transmitted to another (the terminus).
A connection Y is characterized by its origin and
terminal units ( «; and w, , respectively), and by a

%
transmission function which determines the amplitude

of the signal induced at the terminus as a function of the
amplitude and time of the signal generated by the origin

“
unit.  This signal will be symbolized by £;) (t). .

DEFINITION 5: A signal transmission network is a system of signal generating

units, linked by connections.

4.2 Elementary Units, Signals, and States in a Perceptron

A perceptron (which will be defined in the next section) is a
signal transmission network containing three types of signal generating
units: sensory units, association units, and response units. These units
all have signal generating functions which depend on signals originating
elsewhere in the network, or else externally, in an outside environment.

The signals upon which the generating function of a unit depends are called

%
In previous reports, the term 'transfer function' has been used for

this characteristic. Since ''transfer function'" has a somewhat different
meaning in control system theory and elsewhere, it is avoided here, and
the term "transmission function' is preferred.
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the input signals to that unit. These units are defined here in a sufficiently
general manner as to include biological neurons as a special case. We shall
be chiefly concerned, however, with models which employ simplified versions

of such neurons.

DEFINITION 6: A sensory unit (S-unit) is any transducer responding to

physical energy (e.g., light, sound, pressure, heat,

radio signals, etc.) by emitting a signal which is some
function of the input energy. The input signal at time ¢

to an S-unit 4 from the environment, W, is symbolized

<, (t) . The signal which is generated by «; at time

¢ 1s symbolized /J;‘ 't)

DEFINITION 7: A simple S-unit is an S-unit which generates an output

3 *
signal 4, = + / if its input signal, r,,, exceeds a

given threshold, (; , and () otherwise.

DEFINITION 8: An association unit (A-unit}is a signal generating unit

(typically a logical decision element) having input and

output connections. An A-unit Q; responds to the

4

sequence of previous signals Yy received by way of

J q oy . *
input connections Cr/o by emitting a signal a; (t) .

DEFINITION 9: A simple A-unit is a logical decision element, which

generates an output signal if the algebraic sum of its
input signals, o¢; , 1is equal or greater than a threshold
quantity, @ > O . The output signal af is equal to +/
if o, 22 and () otherwise. If n.; = +/ , the unit

is said to be active.
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DEFINITION 10:

DEFINITION 11:

DEFINITION 12:

DEFINITION 13:

A response unit (R-unit) is a signal generating unit
having input connection~s, and emitting a signal which is
transmitted outside the network (i.e., to the environment,
or external system). The emitted signal from unit 7

will be symbolized by rt-* .

A simple R-unit is an R -unit which emits the output

r" - 4/ if the sum of its input signals is strictly
positive, and 7=~/ if the sum of its input signals
is strictly negative. If the sum of the inputs is zero,
the output can be considered to be equal to zero or
indeterminate. (A physical unit which oscillates in
response to a zero signal would have the required

properties.)

Transmission functions of connections in a perceptron

depend on two parameters: the transmission time of the

connection, 7, , and the coupling coefficient or value

of the connection, v The transmission function of

a connection ¢, from u«; to w«, is of the form:
¥

" . X -
o (t) # l;rL-J- 03 w; (¢- TL'J‘}] .  Values may be

fixed or variable (depending on time). In the latter

case, the value is a memory function.

The activity state of the network at time ¢ is defined

*
by the set of signals, (/; , emitted by all signal

generating units at time - ¢
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DEFINITION 14:

DEFINITION 15:

DEFINITION 16:

The memory state of a network is the configuration of

values associated with all (variable valued) connections

at a specified time.

The phase space of a network is the space of all possible

memory states, for a given network. In general, if there
are N variable-valued connections in the network, the phase
space may be represented by a region in Euclidean N-space,
each coordinate corresponding to the value of one connection.
The memory state of the system at any specified time can

be characterized by a point in this phase space, and the
history of the system by a directed line, or path, followed

by this point.

The interaction matrix for a network of S, A, and R units

is the matrix of coupling coefficients, G for all pairs
of units, ./, and Lo If there is no connection from
(- to i <+ is defined as zero. Specifying an

1 [/

interaction matrix is equivalent to specifying a point in

the phase space.

4.3  Definition and Classification of Perceptrons

DEFINITION 17:

A perceptron is a network of S, A, and R units with a
variable interaction matrix ¥V which depends on the

sequence of past activity states of the network.
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DEFINITION 18:

DEFINITION 19:

DEFINITION 20:

DEFINITION 21:

The logical distance from unit w; to «; is equal to the

number of connections in the shortest path by which a

signal can be transmitted from «; to «;

A series-coupled perceptron is a system in which all

connections originating from units at logical distance
from the closest S -unit terminate on units at logical

distance A+/ from the closest S -unit.

A cross-coupled perceptron is a system in which some

connections join units of the same type (S , A or R )
which are at the same logical distance fromn S -units, .

all other connections being of the series-coupled type.

A back-coupled perceptron is a system in which at least

one A or R unit at a distance <, from the closest
S -unit is the origin of a connection back to an S -unit
or to an A -unit at a distance o, < o/, {rom the closest
S -unit; i.e., this is a system with feedback paths from
units located near the output end of the system to units

closer to the sensory end.

It should be noted that the above definitions are not exhaustive;

they are intended to designate certain generic classes of perceptrons with

which we shall be cencerned. The initial models to be considered are of the

type specified by the following definitions:
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DEFINITION 22: A simple perceptron is any perceptron satisfying the

following five conditions:

1. There is only one R -unit, with a connection

from every A -unit.

2. The perceptron is series-coupled, with connections

only from S -units to A -units, and from A -units

to the R -unit.

3. The values of all sensory to A -unit connections

are fixed (do not change with time).

4% The transmission time of every connection is

either zero or equal to a fixed constant, 77

5. All signal generating functions of S , A , and R
X 0
units are of the form w, (t/ = (o, (+]) , where
(v (#) 1is the algebraic sum of all input signals

arriving simultaneously at the unit ¢/

DEFINITION 23: An elementary perceptron is a simple perceptron with

simple R- and A - units, and with transmission functions

¥ I
of the form 1y, () - 1} (1 -T)’V[J'(f).

Perceptrons can be represented graphically in several different
ways. In particular, frequent use is made of three types of diagrams, which

will be called network diagrams, set diagrams, and symbolic diagrams.

Depending upon the level of specificity required, any one of these diagrams

may be used to represent the same system. The three types of diagrams
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are illustrated in Figure 2. The network diagram shows each connection
and signal unit individually; the arrows indicate the direction of signal
transmission through the connections. The set diagram represents all
S-units as a single set, connected to the set of A-units {or association
system) which is represented by a Venn diagram, the subsets of which

are connected to different R-units. Set diagrams of this general type are
found to be particularly useful as an aid to analysis. The symbolic diagram
for this same perceptron merely indicates the kinds of connections which
exist, namely, Sto A, A to R, and Sto S. The perceptron illustrated
would be called a three-layer perceptron, cross-coupled at the sensory

layer.

™
S .A
NETWORK DIAGRAM =><O Ry
ZD—-—-
L—D (@] RZ
A
5
SET DiAGRAM O R, r DIAGRAMS OF SAME SYSTEM
O R,
SYMBOLIC DIAGRAM

Figure 2 PERCEPTRON DIAGRAMS
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4.4 Stimuli and Environments

DEFINITION 24: A stimulus is any non-zero set of input signals, ,C:,L- (t) ,
tothe S -units attime ¢ . If there are N, sensory
units in the retina, then a stimulus can be characterized by
a vector of A, elements, representing the signal to each
S -unit as an element of the vector. The condition in
which all input signals are equal to zero is not considered

a stimulus unless otherwise specified.

DEFINITION 25: A stimulus world (or environment ) is any set of stimuli,

defined for a specified S-unit set. The stimulus world
will be symbolized by W. The number of different stimuli

will usually be denoted by »

DEFINITION 26: A stimulus-sequence world (or stimulus-sequence

environment) is any set of stimulus sequences, each
consisting of an ordered series of stimuli from the set W
(For example, if the image of a printed word is a stimulus,
and W consists of all words in a dictionary, then the

set of all English sentences would comprise a stimulus -

sequence world.)

4.5 Response Functions and Solutions

DEFINITION:27: A response function is any assignment of R -unit output

signals to stimuli in W . For a simple perceptron, the

response function R(W) is a vector of » elements,
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DEFINITION 28:

DEFINITION 29:

DEFINITION 30:

4.6

( #, K,,---y, #, )indicating the value of the
response for each of the stimuli, S 52 yrees S, in

the environment.

A classification is an equivalence class of response

functions. Two response functions are considered
equivalent if their corresponding elements agree in
sign. For any perceptron with one simple R -unit, a

classification, (W), divides W into two classes:
.*

a positive class consisting of all stimuli for which » = +/

and a negative class, consisting of those stimuli for which

*(
r - -/

A response-seguence function is an assignment of sequences

cf R -unit output signals to stimulus sequences in a
stimulus -sequence world. This is a generalization of the

concept of a response function to include a time dimension.

A solution to a response function (or classification) is said
to exist for a given perceptron if there is a point in the
phase space of the perceptron such that the response «;
(specified by the function) will occur if the stimulus §;

is shown, for all 5, in W

Reinforcement Systems

DEFINITION 31:

A reinforcement system is any set of rules by which

the interaction matrix (or memory state) of a per-

ceptron may be altered through time.
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DEFINITION 32:

DEFINITION 33:

DEFINITION 34:

DEFINITION 35:

DEFINITION 36:

A reinforcement control system is any system or

mechanism external to a perceptron which is capable
of altering the interaction matrix of the perceptron in
accordance with the rules of a specified reinforcement

system.

Positive reinforcement is a reinforcement process in

which a connection from an active unit «,; which
terminates on a unit ", has its value changed by a
quantity Av;; (t) (or at a rate a’?/,'J'//_f/.r.‘ ) which

agrees in sign with the signal u;/f)

Negative reinforcement is a reinforcement process in

which a connection from an active unit «~ which

terminates on a unit « = has its value changed by a

quantity bvi; (t, (or at a rate dva'J'//c[z“ ) which

*
is opposite in sign from v ; (¢

A monopolar reinforcement system is a reinforcement

system in which the values of all connections terminating
on a unit (. remain unchanged at time ¢ unless af(t)

is strictly positive.

A bipolar reinforcement system is a reinforcement

system in which the values of connections are subject
to change regardless of whether the output of the

terminal unit is positive or negative.
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DEFINITION 37:

DEFINITION 38:

Alpha system reinforcement is a reinforcement system

in which all a<tive connections C;J' which terminate on
some unit «; (i.e., connections for which u,; (t-7) + 0)

are changed by an equal quantity 47, (t)=1rn or

at a constant rate while reinforcement is applied, and
inactive connections (uj (t-7) = 0) areunchanged at
time # . A perceptron in which «s -system reinforce-

ment is employed will be called an oc -perceptron. The

reinforcement will be called quantized if the change is a

fixed quantity (’IA 2| = |>7|) or non-quantized if the value may

change by an arbitrary magnitude.

Gamma system reinforcement is a rule for changing the

values of the input connections to some unit, whereby all
active connections are first changed by an equal quantity,
and the total quantity added to the values of the active
connections is then subtracted from the entire set of
input connections, being divided equally among them.

Such a system is said to be conservative in the values,

since the total of all values can neither increase nor
decrease. The change in 77 is equal to

Z ted; ()N

Arrseft) Cepasafpl= 4 : J v
LV ! Ly ,r‘.,-"l- /I; |

o

where ). (t) -/ if uf(t-T)* 0, O otherwise;
N = number of connections terminating on ¢,

y = reinforcement quantity (typically + 1 or 0).
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Additional reinforcement rules, and variations of the above,
will be presented as required. The above terminology has been standardized
in previous work on perceptrons, and represents the systems on which most
analysis has been done. In most of the cases to be considered, the reinforce-

ment control system émploys one of three training procedures, defined as

follows:

DEFINITION 39: A response-controlled reinforcement system ( R -controlled

system) is a training procedure in which the magnitude of
¥  is constant, and the sign of 7 is entirely deter-
mined by the current response, #* , regardless of the
current stimulus, S . .In general, unless otherwise
specified, this term implies that the reinforcement is
always positive (i.e., the sign of 7  agrees with the

sign of 7 *,ina simple perceptron).

DEFINITION 40: A stimulus-controlled reinforcement system ( § -controlled

system) is a training procedure in which the magnitude of

r>is constant, and the sign of ¥ is determined
entirely by the current stimulus, $ , and a pre-
determined classification, <(W) ; the current response
of the perceptron does not influence either the sign or

magnitude of //

DEFINITION 41: An error-corrective reinforcement system (error

correction system) is a training procedure in which

the magnitude of » is O unless the current response
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of the perceptron is wrong, in which case, the sign of
y is determined by the sign of the error. In this
system, reinforcement is O for a correct response,

and negative (see Definition 34) for an incorrect response,

or, more generally, 1 =#(R% ") where £ is the
required response, " is the obtained response, and f

is a sign-preserving monotonic function, such that

£(0) = 0.

In previous reports (Refs. 41, 82 )the R -controlled system
has been referred to as a '"spontaneous learning system'', since the
perceptron evolves in an autonomous fashion, uninfluenced by the '"correct-
ness' of its outputs. The reinforcement control system requires no
inforrnation from the environment in order to control the changes in the
memory state of the perceptron. The S - controlled system has also been
referred to as a '"forced learning system'', since the r.c.s. imposes a
predetermined classification on the perceptron's responses, without taking

the actual responses of the system into account at any time.

4.7 Experimental Systems

DEFINITION 42: An experimental system is a system consisting of a

perceptron, a stimulus world, W , and a reinforce-
ment control system. The reinforcement control

system may be an automatic regulating device (e.g.,

a thermostat) or a human operator, capable of respond-
ing to the responses of the perceptron and the stimuli in
the environment by applying the appropriate reinforcement

rules, altering the memory state of the perceptron.
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Figure 3 EXPERIMENTAL SYSTEM WITH A SIMPLE PERCEPTRON
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Figure 4  GENERAL EXPERIMENTAL SYSTEM
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The basic organization of an experimental system with a simple
perceptron is shown in Figure 3. A more general system, in which the
perceptron may be of any variety, and where the output of the perceptron

is capable of modifying its stimulus environment, is illustrated in Figure 4.

A comparison with Figure 1 should indicate the basic similarity between the
perceptron, in a general experimental system, and the biological nervous
system. Analyses of perceptron performance always postulate an experi-
mental system, involving, as a minimum, the components shown in Figure 3.
The reinforcement control system can be considered a specialized part of
the environment, in its relation to the perceptron, although it might actually
be built into the same physical mechanism as the‘p“erceptron itself. In an

R - controlled system, the information channel shown from W to the r.c.s.
is non-functional, while in an S -controlled system the information channel
from W to the r.c.s. is non-functional, and in an error-correction system,
both channels are essential for reinforcement control. In digital simulation
programs, the r.c.s. is the part of the program concerned with reinforcing
the simulated perceptron, while in experiments with hardware systems it is

generally a human operator.

An experiment involves an experimental system, a training
procedure, and a procedure for testing the perceptron, or measuring its
performance. A number of typical psychological experiments, which are
of interest for perceptrons, were outlined in Chapter 3, and some of

these will be analyzed in the following chapters.
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PART II

THREE-LAYER SERIES-COUPLED PERCEPTRONS




5. THE EXISTENCE AND ATTAINABILITY OF SOLUTIONS IN

ELEMENTARY PERCEPTRONS

The perceptrons to be considered in Part II ali consist of
three layers of units connected in series, with the topology S—= A—>R.
In the following chapters, it will be seen that these perceptrons are
capable of learning any set of responses which we might care to have them
make to a universe of stimuli. Their main deficiencies are a lack of ability
to generalize their performance to new stimuli or new situations where they
have not been explicitly taught and a lack of ability to analyze complex

environmental situations into simpler parts.

The first perceptron model to be considered in detail is the
elementary < -perceptron. In this chapter, we shall examine the intrinsic
ability of such systems to realize solutions to classification problems,
including several theorems concerning the relationship of the size of the.
system to the existence of solutions, and the possibility of attaining such
solutions by different training procedures. The term ''solution' is used in
the sense of Def. 30, in Chapter 4. Most of these results were first presented

in Ref. 86.

5.1 Description of Elementary o¢ -Perceptrons

Elementary < -perceptrons were defined in Chapter 4, as a
subclass of simple perceptrons, in which S-units send connections to
A-units, and the A-units all send connections to a single R-unit, no

other connections being permitted, and all connections having equal trans-
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mission times, 7= . Without loss of generality, 7= can be taken to be
zero, and this assumption of instantaneous transmission will be made
whenever we deal with simple perceptrons, unless otherwise stated. The
A-units and R -unit in all elementary perceptrons are of the simple type,
i.e., they have a threshold, € , (equal to zero in the case of the R -unit)
and emit a signal only if the input sigr‘1a1, o¢ , is equal or greater than &
The connections from S to A -units have fixed values, and the cornections
from the A-units to the R -unit have variable values, which depend on the
history of reinforcements applied to the perceptron. The connections,in an
elementary perceptron, all have the transfer function (assuming 7  to be

zero).

* «
5y () = u: (¢ U (¢)

In the o¢ -system, which is to be considered initially, the reinforcement

rule takes the form

(7t @) 26

L"IV-"J' (t) - uir“”? ) 1(‘ otherwise

In an elementary perceptron, where the only variable connections occur
from A -units to the R -unit, the simplified notation 2/, will generally
be taken to mean the value of the connection from unit 2,/ tothe R -unit.
The basic parameters with which we shall be concerned in this chapter are
the ﬁumber of S -units, //, , and the number of A -units, N,
Without loss of generality, we can assume the A, sensory units to be
situated at points in a two-dimensional field, or "retina', and regard the
input stimuli as patterns of illumination on the retina. A typical system

of this type is illustrated in Figure 5.
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Figure 5 NETWORK ORGANIZATION OF A TYPICAL ELEMENTARY PERCEPTRON

5.2 The Existence of Universal Perceptrons

Most of the theoretical results obtained to date for elementary
perceptrons are concerned with experiments in which a classification of an

environment, (v, , is taught to the perceptron by some training proce-
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dure. The first theorems to be considered deal with the question of whether
a solution to such a classification problem exists, or might exist, for a
given perceptron. To begin with, the following theorem shows that the
organization of an elementary perceptron is sufficient to permit the
construction of a '""universal system', for which a solution exists for every
possible classification, (W) . Perceptrons constructed in this manner

are generally not very interesting as brain models, but the theorem indicates

the wide range of possible behavior which might be obtained from such

systems.,

THEOREM 1: Given a retina with two-state (on or off} input signals,
the class of elementary perceptrons for which a
solution exists to every classification, C(W) , of
possible environments W , is non-empty.

PROOF: Since it is sufficient to show the existence of such a perceptron,

we proceed by construction. Let there be one A -unit for every possible
stimulus configuration on the retina. Consider stimulus 5; and its
corresponding A -unit, a; . Let @; have an excitatory connection
(value equal to + |} ) originating from every ""on'" point in 5; , and an
inhibitory connection from every "off' point in 5; , and let its threshold
be equal to the number of excitatory connections. Then there will be one
and only one A -unit responding to every possible stimulus, and no
A-unit responds to more than one stimulus. (We say that a: "responds"
to S, if a; + () .) Now consider any. stimulus world, W , defined on
the retina, and a corresponding classification, (/lW//, which associates

a positive or negative classification with each stimulus, S in W
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In order to realize the classification, it is only necessary to set the
value of the connection from «@; equal to + 1 if the class of 5, is positive,

or - 1 if the class of S; is negative. Q.E.D.

While this solution is clearly uneconomical and of little practical
interest, it is sufficient to show that there are no ''special cases'' of
classifications which have no solution, at least for a retina of binary elements.
If the inputs to the S-units are capable of taking on more than two values,
then a more elaborate construction (e.g., one which separates each combination
of input values to a different set of A-units) would be required. It is left to
the reader to satisfy himself that a system with less '"depth' than an elementary
perceptron (i.e., one in which S-units are connected directly to the R-unit,
with no intervening A -units) is incapable of representing a solution to every

C(W) , no matter how the values of the connections are distributed.

5.3  The G-matrix of an Elementary ~ -Perceptron

In practice, the cases of interest are those in which each
stimulus activates some set of A-units, and each A-unit is likely to
respond to a great many different stimuli in W . In order to deal with
such systems, the concept of a G-matrix has been found to be particularly
helpful, and this will now be defined. The definition given here is suffi-
cient for elementary perceptrons, and will be generalized in a later

chapter to permit us to deal with more complex systems.
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DEFINITION: Consider a (simple) perceptron, and a stimulus world, W/ ,

consisting of » stimuli. Then the matrix

D Gz *° ?.fn\

92/ 9722 e By |'|
G = 5 m O J

. ) s o o - |

\ gn]. 9/12 . o ,/;””j.-

consists of elements g, : called generalization coefficients. Each
o/

element, ¢.. , is equal to the total change in value ( 7 A2 ) over

all A-units in the set responding to S, if the set of units responding to

S, are each reinforced with ), equal to //NU (where 4/, is equal to
<

the number of A-units in the system). For simple perceptrons and a

given environment, ( 1is fixed for all time.

If we are dealing with a particular o¢ -perceptron, where

A’?r{; = 72 (t)-)7 , we have

~.?(:/ . = O[J'

where @.. = the proportion of A-units which respond both to 5;

tJ
and SJ-

If we are dealing with a randomly selected member of a class of perceptrons,

/;, ) is a random variable, and we have the equation for the expected
value of 9.
Eip - @
where (,')L-J- = the probability that an A-unit in a given class of

perceptrons responds to both stimuli, 5, and 5

S

3
With » = ///Va we have a ''mormalized G-matrix". For some purposes

it is convenient to take » =/ , in which case the '"unormalized G-matrix"
is equal to A, times the normalized matrix defined above.
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For the x -system, sk is simply a measure of the inter-
section of the sets of A-units responding to 5% and to b'J- , and is
equivalent to a "'set intersection matrix". G is always symmetric for
an alpha system. In any elementary perceptron (at a given time % )
the net input signal to the R-unit from the set of A-units responding to

stimulus 5, will be called ¢, and is given by

. ~ (S = \
(r ey G Xy F Ay Xat s Foags X, (5.1)

where # ; = the amount of reinforcernent applied to the system, over all
e

appearances of S- prior totime * . In matrix form, the vector «

of signals //, from all stimuli ., in .v is given by

(1 = Gr (5.2)

where »x 1is a vector of elements D2 D defined as above.

5.4 Conditions for the Existence of Solutions

In general, if we are given the rules of organization of a
perceptron and some classification, ¢ (s, , it is by no means easy to
say whether or not a solution to /) exists for the perceptron in question.
The following theorems deal with the existence of such solutions from
several different points of view. We first define the bias ratio of an A -unit

as follows:

DEFINITION: Given a classification, 7 (W/, the bias ratio of an A -unit,
* =]

. : . o -
»; » is defined for any set of stimuli in W as »;  'n. , where .

number of stimuli in the set which are members of the positive class ¢ * and

which activate 7. 3 »n;  =number of stimuli in the set which are members
of the negative class ¢ - and which activate .
% Jt is assumed here that all initial 70
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THEOREM 2: Given an elementary perceptron and a classification

"C(w) , the following conditions are necessary

but not sufficient for a solution to (W, to exist:

i) Every stimulus must activate at least one A -unit;

ii) There should be no subset of stimuli containing at
least one member of each class, such that in the
union of the responding A -unit sets, every A -unit
has the same bias ratio (with respect to the stimuli

of the subset).

PROOF: We first prove that the conditions are necessary. Condition i)
is obvious. The proof that condition ii) is necessary is as follows:

Assume there is a subset violating this condition. Let u; =

input signal to £ generated by stimulus 5, - Then summing the values of
all such signals from stimuli of the positive class in this subset, we have
(since violation of ii) requires that n[’/nl-_ is constant for A -units

responding to stimuli in this subset).

" .

5 2 7 f/" z b - /Il' 2

et U‘J - /7[‘ /—l . ._—_ - hl. T = = (1.,/
3 L /

B r Gl
Y
J(

Thus the sum of the R -unit input signals for stimuli of the positive
class must have the same sign as the sum of the R -unit input signals
for stimuli of the second class. But then one of the sums must disagree
in sign with the sign of the class, and therefore, one of its components
(i.e., one of the «.» ) must disagree in sign with the class, indicating

that at least one stimulus must be classified incorrectly.

-104-




To show that these conditions are not generally sufficient,
consider the following example: Let there be five stimuli, and four A -units.

The A -units activated by each stimulus are:

S, activates «,

52 activates a,

activates as and «y,

S, activates a,, @, , and ay

. )
activates q,, o, and ay

]
Let the positive class consist of 5/ , S, , and 53 , and the negative
class consist of S, and S, . Then the bias ratios for 2, and @, are

not the same as for a, and «, . Also, there exists no subset with
stimuli from each class, with equal bias ratios for all A -units. The
values of «, and «, must be positive, and the sum of the values of a;
and o, mustalso be positive,to obtain the required the required classifi-
cation for the members of the first class. But then it is clear that either

S5, or S, must be classified incorrectly, which proves that conditions i)

o

and ii) are not sufficient.

In the next theorem we make use of the symbol (4 to denote
a signal vector, such that the element «; agrees in sign with the
classficiation of S; in C(W) . Such a signal vector will evoke the
correct response for each stimulus in W . Two such vectors which
agree in the signs of their elements are said to be in the same orthant

(generalized quadrant, in » dimensions).

%
In Theorem 9, a necessary and sufficient condition, closely related

to the above, will be presented.
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THEOREM 3: Given an elementary ¢ -perceptron, a stimulus world W , |
and any classification ¢(W); then in order for a solution
to C(W) to exist, it is necessary and sufficient that there
exist some vector (& in the same orthant as C(W,) , and

some vector ¥ such that Gz =« .

PROOF: The proof would follow trivially from Equation (5.2) and the
definition of « , were it not for the possibility that a solution might
exist involving some unique assignment of values to the A-R connections,

which could not be attained by any reinforcement vector, * , defined as in

Equation (5.1). It will be shown, therefore, that if a solution exists, in the

form of any assignment of values to A-R connections, an equivalent solution

must exist corresponding to the reinforcement of each stimulus, §$; , by an:
amount x, . For brevity, throughout the following discussion, we will speak
of ""the value of an A -unit" in place of "the value of the connection from an

A -unit to the R -unit". The following definitions and notation will be used:

I if the A -unit a; responds to S;
*
gl (St') =

0 otherwise

D . . . *
A is an n by N, matrix, in which the element 2;p = a; (SE
A solution to a classification problem is said to exist if there is some
distribution of values over the A -units which enables the perceptron to
perform the discrimination; i.e., there exist vectors 720 and « such

that

A = w
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Consider the matrix AA' . The ¢, i element of this matrix (say A[j ) is

}; ay (S ag(s;) = Ay

But the (un-normalized) (£ -matrix for an & -system, expressed in

terms of the above functions, has elements

9’0‘ = Z‘Oz(s[) 0‘2 (SJ')
£

so that the matrix G = AA . Note that this shows that 6 is either

positive definite or positive semidefinite.

We then have, for any vector x , such that z'A =0

’

1) 24 =0 = x'44"= x'6 =0

]

2) 26 =0 = x'6x = rAAx = (XA, XA) =0 => xA =0

Hence, the rank of 4 = rankof A , since any vector X which is in
the left null space of & is also in the left null space of 4 ; therefore the
left null spaces of ¢ and 4 are identical. Since the rank plus the

dimension of the null space is equal to the dimension of the domain, & and

A  must be of the same rank.

But the coclumns of 6 are linear combinations of the columns of

A , hence the space spanned by the columns of & 1is identical with the

space spanned by the columns of A

-107-




Since Av is a linear combination of the columns of A , the
existence of 2 and « such that A~ =« implies the existence of a vector
x such that Gx = « . Thus, if a solution exists, there is a solution to
the equation Gx =« , so that the condition of the theorem is necessary.

But it is also sufficient, since « by definition represents a solution

vector. Q.E.D.

COROLLARY 1I: Given an elementary perceptron and a stimulus world W ,

Then if G is singular, some ((W) exists for which

there is no solution.

PROOF: Each (W) requires a solution vector in a different orthant, and

the set of all (W) , for a given W | requires solutions in every possible

orthant. But if & is singular, it maps the entire space into a hyperplane,
and this plane must fail to intersect certain orthants. Consequently, the

classifications ( (W) which are represented by vectors in these orthants

have no solution.

COROLLARY 2Z: Given an elementary perceptron, if the number of stimuli

in W is n >N, , there is some ((w) for which no

solution exists.

PROOF: From Theorem 3 and Corollary 1, it is clear that there will
be some ( (W) which has no solution if and only if G is singular. G
has the same rank as the matrix A ; but A isan n by N, matrix,

implying that A, and therefore ¢ has rank < n
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COROLLARY 3: For any elementary perceptron, as the number » of

stimuli in W/ increases, the probability that a randomly
selected classification, (/W) , has a solution approaches
zero (where (W) is chosen from a uniform distribution

over the possible classifications of W/ ).

PROOF: From Corollary 2, ¢ 5 » increases beyond the number of A-units

in the perceptron, there must be some (W, without a solution. At the same

time, increasing # increases the set of possible classifications in proportion

to "7 . Butowing to a theorem by R. D. Joseph and Louise Hay (Ref. 41,

Appendix ), the number »(r) of classifications which have solutions is no
reater than 2 (””) P A PR /'7'/?‘, where 7 < AN, is the rank of the

g o/ 7\ e £ Na

G-matrix. Therefore, the upper bound of the probability of selecting at random

one of the classifications which has a solution diminishes with n(ft)/2" which

goes to zero as » goes to infinity.
Several additional tests for the existence of solutions, which are
of practical utility in diagnosing small systems, will be found in Theorems 9

and 10, at the end of this chapter.

5.5 The Principal Convergence Theorem

In the preceding section, the existence of solutions to classification
problems in an elementary perceptron was considered, but nothing has been
said about the ability to achieve such a solution by a training procedure. In
this section, we consider the ability of an elementary ¢ -perceptron to learn
the solution to a classification (i) under an error correction procedure.

The following theorem is fundamental to the theory of perceptrons.
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A general definition of an error correction procedure was given
in Definition 41, in Chapter 4. We now define in detail two specific forms of

this procedure, as they apply to the elementary o¢ -perceptron.

Consider some classification, C{#/). Let

+ 1 if stimulus S; is to be in the positive class

T -1 if stimulus S; is to be in the negative class

where Iy oivy n .

In order to obtain the most general conditions for the following theorem, a

non-quantized error correction procedure is defined as follows: No response

will be considered correct unless the magnitude of the input signal to the
R-unit (w..) is greater than ¢ , and the sign of (/; agrees with 0.
for the current stimulus. (This corresponds to an R-unit with a threshold
of ¢ , or for the special case where ¢ = 0, it corresponds to a simple
R-unit.) If no error occurs for stimulus 5. (i.e., 0-w«; > o )no
reinforcement occurs; but if an error does occur a quantity 7 - . Ax;
is added to the value of each active A-unit, A r; (the number of units of
reinforcement) being just sutficient to bring the magnitude of the signal /4,
past the threshold level, « , to the level e >d . Ina quantizgi

= s [/

correction procedure, the identical rules apply, except that » = o 4x; = s

A x. representing a single unit of reinforcement.
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THEOREM 4: Given an elementary (x -perceptron, a stimulus
world W/ , and any classification (/W/ for which a
solution exists; let all stimuli in /v occur in any
sequence, provided that each stimulus must reoccur
in finite time; then beginning from én arbitrary initial
state, an error correction procedure (quantized or
non-quantized)will always yield a solution to (1, in
finite time, with all signals to the R-unit having magni-

tudes at least equal to an arbitrary quantity ¢ = 0.

L
< /o

PROOF:  The matrix A is defined as in Theorem 3, so that o, = a/ /5.
We recall that 4 - . We also define the ma trix © such that

by 2 22 ’ ., the matrix ‘/ - -1 and the diagonal matrix 2

such that ‘s Ny Note that /2 - I, A =8, and H -~ 2GD.

We first consider the non-quantized error correction procedure.

In this case, no reinforcement is applied unless an error occurs; if an error

does occur (when o-.: -~  )the quantity o- /fi¢; L r; - ) is added
to the value of each active A-unit, /.- Dbeing chosen so that the input to
the response unit is exactly 2-¢ (< - 1 . It will be shown below that
sucha /£ - - exists.

3¢

The proof of this theorem (which was first published by Rosenblatt in
Ref. 86) has undergone a number of modifications. The original treat-
ment was insufficient to prove the theorem in a rigorous fashion;
subsequent forms have been due to Block, Joseph, Kesten, and others;
and the present proof owes much to each of these. An interesting
alternative approach, with a slightly modified reinforcement procedure,
has recently been proposed by Papert (Ref. 67) who attempts to shorten
the demonestration and avoids use of the G-matrix. Unfortunately, there
are several logical errors in Papert's argument, the correction of which
would tend to lengthen his demonstration.
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It has been noted previously that the space spanned by. the columns
of G is the same as the space spanned by the columns of A (the rank of
G being equal to the rank of A ). Consequently, for any N, -vector V ,

there is an # -vector Z suchthat AV =67,

An arbitrary initial state for the perceptron is represented by an
N, -vector V° of values for the A-units. Let Z° be a corresponding
n -vector. Let Z be the , -vector whose { component, 2 is
equal to the total quantity of reinforcement given in all previous corrections

for stimulus S, , i.e.,
‘_‘ . . -
che = Z A Ax; (summing over all previous corrections).

Let U = 6Z°+ GZ = G(7°+2)=6D(X°+X) where X°=07° and
.t

X = pPZ . The ¢ 1component of ¢/ , w; , would be the input to the

R-unit if 5; were to occur at the present time. Let W = DU . This

equation can be written
W~ H{X°+X)

where a negative .« (or more precisely, « £ ¢ )represents an error.
The x; are always non-negative, and this will be understood for the
remainder of the proof. We now define A/ as the maximum diagonal element,

h;; »of H . We also define the function of the » -vector Z

n
K(z) = 2'HZ - 2¢ Z 2;
(=1
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We then obtain the following results:

1) The existence of a solution means that there is an A, vector v* such

that for all ¢

where «/;> 0. In matrix form AV - W

2) Consider X'HX for all X such that |[X]| =/ (and of course x; 20 ).
X'HY = (x¥'B)(x'8)" sothat x'HX > (O . Suppose X'HY = (O ;then XA =0
Clearly X'W”*> 0 , but x'W*= x'8v*= 0. This contradiction shows

that X'HX > 0 on this closed, bounded set, so that there exists a minimum

o > 0 such that XWX > o] x|° for all X for which x:2 0 forall (

Note that A7 2 o¢ > O as a consequence. Note also that ¢.. = h;; 2 ¢ >0.

3) Dox; £ X (Schwarz's inequality)
and |[X'HY°| < ||HX°]-lx]l = & |x| (Schwarz's inequality)

K(x)+ 2X'HX°

4) K (X°+X) - K(X°)

v

2
o |XI™= 2evn Xl - 24|

<
_(Areln)”
- %

aK (X +X

5) L = 2/’/[—26
ox;

94{/[ g . .

and S oo 21 0) . This latter relation proves the contention at

azl. [
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the beginning of the proof that Ax; 2 O exists. Specifically, we have

hil
6) A correction is made for Sy onlyif 4, £ & . Denote the change in A

when this is done by Ak , and by subscript @ the conditions before the

correction.

R’.[o‘/‘ﬂxi

€
AK(X°tX,) =2/ (wy-€) dx =2/ 7,'.1.‘ (wr; =€) dury
Ll
Xio Lo
€

/ 2
- —;— (ur‘.— 6) 7
tL

Lo

2
()7

= o

L i

D -¢)*

<
M

7) From 4) and 6) we conclude that the maximum number of corrections

is

M(’é+€/n‘)2
o (€ =) 2
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8) In particular, if X -0 and ¢=0 (corresponding to a perceptron with
a simple R-unit and no initial reinfcjrcement) then £ = || HX"H =0 and

the bound becomes » A/ /. .

.

This proves the theorem for the case of the non-quantized
correction procedure, since A is finite, implying that the process arrives
at a solution in finite time. For the quantized case, we have the condition
that .1 ¢, 1is always | when a correction occurs (the vector X representing
the numbers of unit corrections for each of the » stimuli). For convenience,

we take the case where +/ = O and € =M =(q;:)psy - Then in step 6)

we have:
”lio*/ /725‘0;—/
P, . . ) .- . 00 F e - )= ‘ 2 o
6a) AR LA T+ A - sem A "/"{ / [.“f[o*hu(ﬂ xis! M]"l"z
Y0 )10
XL.O+/
7 owere A =M DL (xR
¢ 7 v w0y

ES

7a) From 4) and 6a) we have that the maximum number of corrections is

An alternative bound, found by H. Kesten, is ARCAR: L0 /(r,-(} hei)

This under some circumstances represents a sharpLer bound; nonetheless,
both bounds are generally quite poor, as estimates of the actual number
of steps.
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8a) This upper bound is again minimized when X %= sothat 4= | HXOH =0.

The bound is then nM/oc

This completes the proof of the theorem for the quantized case.

Q.E.D.

COROLLARY : Given an elementary perceptron, a stimulus world W ,
and any classification ¢ (W) ; then if a solution to C (W)
exists, the set of possible solutions to (W) has positive
measure over the phase space of the perceptron.

PROOF: From the proof of the theorem, we know that if a solution exists,

there is a strictly positive vector X such that #Y = P (where F is a
strictly positive vector). Let Y be any pn -vector; then HHV” < b vl
where b is the absolute value of the maximum eigenvalue of A4 , or the

normof A~ . Let = min p; > 0 , andlet € =,u./(h+/). Let ¢

A [3

be in the € -sphere around X , i.e., U =P+¥Y where |[V| < € . Let
b
Z =Hy ,andlet E = mac 3. < |z| = |wy| < ;—:‘7 & 4. Then

£t 2,¢c~§ > 0

HU = H(U+Y) = P+ Z
Therefore, H(/ is strictly pe itive, and (/ 1is an alternative solution.
This means that there is a cone of vectors including X which maps
into the region which contains # , any such vector representing an equiva-

lent solution. Since the volume of this cone has positive measure over the

phase space, the corollary follows.
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5.6  Additional Convergence Theorems

The theorem in the previous section deals with convergence to a
solution state in an ¢ -perceptron, trained by the error correction procedure.
In this section, it will be shown, first, that a weaker form of correction

procedure can also be guaranteed to yield a solution; secondly, that

reinforcement procedures in which the magnitude of 7 does not depend on
whether or not the current response is correct cannot, in general, be relied
on to converge to a solution. If a solution state does occur in such a system,

it will be shown that it is apt to be unstable except under special conditions.

DEFINITION: A random-sign correction procedure is one in which some

quantity of reinforcement is applied to the perceptron when an error occurs,
and zero reinforcement is applied when the response is correct. The sign
of 7 1is chosen at random, with an equal probability of being positive or

negative, regardless of the response of the perceptron.

THEOREM 5: Given an elementary v -perceptron, with a finite

number of memory states, a random-sequence stimulus
world W , and any classification C(W/ for which a
solution can be reached from the starting point by some
reinforcement sequence, then a solution will be obtained
in finite time with probability 1 by means of a random-

sign correction procedure.

PROOF: The random-sign correction procedure consists of a random
walk in which each step corresponds either to a step of the required
correction process, or a step in the reverse direction. In the course of

this process, the vector (. (defined in connection with Theorem 4) will
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eventually reach some attainable trapping state with probability 1. But the
only trapping states are in the solution space. Consequently, a solution

will be obtained in finite time.

In Chapter 4, (Definition 40) an S-controlled reinforcement

system was defined as a training procedure in which the magnitude of » is
constant, regardless of the current response of the system, the sign of »
being chosen to agree with the sign of the classification of the current stimulus,

S: ,in C(W) . Unlike the methods considered previously in this chapter,
this is not a correction procedure; i.e., the magnitude of reinforcement does
not depend on the occurrence of an error, and only the sign of the required
response is taken into consideration in determining what reinforcement

should be applied. In the following analysis, a solution will be called stable

if, in a given experimental system, all future memory states will also
satisfy the conditions of a solution, no matter how long the experiment

continues. A system employing a correction procedure, since it receives

no further reinforcement once a solution state is achieved, is inherently
stable. The following theorem shows thatthisis not the case for an

S -controlled system.

-THEOREM 6: Given an elementary (¥ -perceptron, a stimulus world W

—and some classification ¢ ('W) for which a solution exists,
a solution can sometimes be achieved by an S -controlled
reinforcement procedure. However, such a solution cannot
be guaranteed for an arbitrary stimulus sequente; and may be
unstable if it occurs.
PROOF: We will first consider a case in which a stable solution does occur,
for the type of experimental system specified by the theorem. Let W/ consist

pf two stimuli, and § Let S, activate some set of A-units, A/ ,

=
2y Do e 2y
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and let S, activate a disjoint set of A-units, A, . Let (W) assign §,

to the positive class and S5, to the negative class. Regardliess of the
sequence and relative frequency of 5, and 5, , it is clear that each
occurrence of 5, will augment w«, in a positive direction, while each
occurrence of 5, will make «, increasingly negative. Since the intersection

A is assumed to have zero measure, there will be no interference between

12
the two stimuli, so that the acquired solution will remain stable no matter how
long the process continues. This example proves the first part of the theorem.
Let us now consider the case of intersecting A-unit sets. Suppose 5, activates
two units, «, and Wy s while S, activates units 2, and <, (the unit o,
responding to both stimuli). If the frequencies of 5, and S, are equal, their
effect on Q, will tend to cancel, and a solution with 2, positive, 7, negative,
and 2, equal to zero will tend to occur. As the sequence continues, the magni-
tudes of 727, and 78 will tend to increase without bound, so that the solution

will become increasingly stable as time goes on. Suppose, on the other hand,
that 5/ occurs with ten times the frequency of 52 . In this case, @, will

gain ten units of positive value for every unit of negative value received from

5, » so that 2/, will tend to increase in a positive direction at nine times

the rate that 9, progresses in a negative direction. Thus the net signal, w, ,
transmitted to the R-unit in response to 52 , which is equal to 2, + 7
will clearly become strongly positive as time goes on, resulting in an

erroneous classification of 5, . Even if the initial state of the perceptron
-/, A (7 ) it is clear that

was a solution state (e.g., 2, - +/, -

the S-controlled procedure will quickly destroy the existing solution, which

i

is therefore unstable. Q.E.D. l

* H. D. Block has pointed out that, while a solution to C(w) can not be guaran-

teed with a random stimulus sequence, nonetheless if a solution exists then
there exists some S-sequence which will guarantee a solution with S-controlled
reinforcement. In particular, if G» - « is a solution, then the occurrence of

Z; with frequency f; - [x| (for all { ) will guarantee a solution.
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In the example considered above, it is clear that a frequency bias,

in which the stimuli of one class are much more frequent than members of the
other class, can strongly prejudice the perceptron to always give the response
associated with the more frequent class, in an S-controlled system. Such a
problem would exist,for example, in trying to teach a perceptron to distinguish
the letters "E'" and "X'" occuring with their normal frequency in English text.
Even if all stimuli occur with equal frequency, however, a similar effect
exists if there 1s a size bias, in which the stimuli in one class activate

more S-points (or illuminate a larger area of the retina) than the other class.
As will be seen in the following chapter, larger stimuli generally tend to
activate more A-units than smaller stimuli, and in the limiting case, the set
of A-units responding to a smaller stimulus may be entirely contained within

the set responding to a larger stimulus. Suppose for example, that 5,

activates units ~ and ~ , while 5. only activates ¢, . A solution which
classifies 5 positively and %, negatively clearly exists (e.g., let =~ - +5
and 1y -~ ) but if the stimuli occur alternately, t, will tend to become

increasingly positive, while //, tends to oscillate about zero. The reader

can satisfy himself that (starting with 7/ values) a quantized error correction

procedure yields a stable solution to this problem after five stimuli.

In the case of R-controlled reinforcement procedures (Definition 39
in Chapter 4) it makes no sense to talk about the probability of convergence to
solution for an arbitrary classification, (W) , since the required classi-
fication plays no part whatever in determining either the sign or the
magnitude of the reinforcement. As will be shown later, it may happen
that an R-controlled reinforcement system leads to the acquisition of an
interesting stable response function by a perceptron, but this cannot

generally be guaranteed, and any classification which is achieved is necessa-
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rily one which is selected by the perceptron, rather than by the experi-
menter. The interesting questions concerning such systems deal with the
types of classifications to which they converge, for different kinds of
environments. In particular, we will be interested in any systems which
tend to form classifications on the basis of some concept of stimulus
"similarity'. It will be shown in later chapters that elementary perceptrons
do not, in general, tend to form classes on this basis except under special,
and highly restrictive, environmental conditions, but that cross-coupled
perceptrons appear to have a striking capability for such "spontaneous

organization'.

In the preceding theorems, only perceptrons employing alpha
system re.inforcement have been considered. The remaining two theorems
consider two departures from this model. The first demonstrates that an
even weaker form of reinforcement than that in the random-sign correction
procedure can guarantee a solution in finite time, provided it is employed in
a correction procedure, in which the application of reinforcement depends

upon the occurrence of response errors. We define a random perturbation

correction procedure as a reinforcement process in which, if an error occurs,

reinforcement is applied to the active A-units, as in the ¢ -system, except
that the magnitude and sign of /7 are both chosen independently and
separately for each reinforced connection in the system, according to some

probability distribution.

THEOREM 7: Given an elementary perceptron with a finite number

of memory states, a stimulus world W, and a classi-
fication ( (W) for which a solution can be reached
from the starting point by some reinforcement sequence,
then a solution can always be obtained in finite time by

means of a random perturbation correction procedure.
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PROOF: The reinforcement process is a random walk, which (for the
given conditions) will eventually take the representative point of the system
to every attainable point in phase space. Since the number of points is assumed

to be finite, a solution must be reached in finite time.

Of the three reinforcement procedures which have been shown
to guarantee solutions in elementary perceptrons (error correction, random-
sign correction, and random perturbation correction procedures) the first
is clearly the strongest, and can be expected to converge most rapidly. The
random perturbation procedure will converge most slowly, since it must
hunt through a large domain of the phase space of the system before achieving
a satisfactory terminal state, and is not guided during this process by any
directional constraints. In this respect, it shares many of the difficulties
of Ashby's homeostat (Ref. 3); but it shares the virtue of the homeostat as
well, that if the solution space is attainable, it will utlimately arrive at a
solution no matter how complicated its functional representation may be.
The random sign and random disturbance procedures may prove to be of
interest in biological models, since the only information required for the

control of reinforcement is whether or not an error has occurred.

In practice, it will be seen that a gamma system (Definition 38,
Chapter 4) generally works at least as well and sometimes better than an
alpha system. Nonetheless, the following theorem indicates that this

system lacks the true universality of the alpha system.
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THEOREM 8: Given an elementary 7" -perceptron, a stimulus

world W , and a classification C(W) , it is possible
that a solution to (¢ (W) exists which cannot be

achieved by the perceptron.

PROOF: Let each A-unit be activated for at least one stimulus in W/ ,
and let each stimulus activate a disjoint set of A-units. Let the classification
function ¢4’} be one which assigns every stimulus to the same class, either
positive or negative. A solution clearly exists, if the values of all connections
are positive {or negative, as required by the classification). But if the initial
state of the system is one in which all values are zero, or of the wrong sign, a
solution can never be achieved by the gamma system, since a solution requires
that the total value of each set <.  of units responding to . , and
consequently the total value over the entire A -set, should agree in sign

with the classification. In the gamma system this is impossible, since the
initial sum of the values is constant. The conservative property of the gamma
system gives it one degree of freedom less than the alpha system, making it
impossible to achieve a solution to such problems unless at least one surplus

A -unit (which does not respond to any stimuli) exists.

The two remaining theorems were proposed by Joseph (Ref. 42),
and establish useful diagnostic procedures for determining the existence of
solutions in both alpha and gamma system perceptrons. As in Theorem 3,

the activity function of the A -unit ~,; is defined as

(1 if 2. 1is active for -
x i 6 J

2 {‘J) T
0 otherwise
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For any » -vector, X , with components Zg o the bias number of a;,

with respect to X is defined as

n
x
Z. x4 0;(Sg)

b (X) =

£=1
This quantity is clearly related to the bias ratio (defined in 5.4)if X is |
taken to be the class-assignment vector for the » stimuli. We will denote
by Xx¥ any » -vector X whose components x. do not disagree in sign with
the required classification, (W), i.e., X, 20 if S, is in the positive

class, and x < (0 if 5, 1is in the negative class. X ¥ will denote a

vector in which the inequalities are strict (no zero components).

THEOREM 9: Given an ¥ -perceptron, and a classification C(W) , a

necessary and sufficient condition that the error correction
procedure reach a solution (in finite time, with arbitrary
starting point) is that there exists no non-zero X¥# such

that b/ 3 0 for all ¢ .

PROOF: For conveneince, an un-normalized G-matrix will be assumed.
For such a matrix,

- ¥ . g @
Gig = g = ZJQ[ (5;) 7 (54)

L

where 4 is the number of A-units in the set responding to both 5- and S5y
Hence, for any » -vector ¥ ,

X'GA Z A o 7/, - L 7J. o 0';(5‘/'») fl{-* (S;E )
s iy #
But
2
L. v rgal(si)alisy)
J ¢ty (A

l‘\J’y/é

Z u{.(x/l*-' Z ’L// a,f iy
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Hence X'6x = Z[[){(X”JL

If the condition of the theorem holds, then X'6X +0 for
X =x" , A = C . Butfrom the proof of Theorem 4, it can be shown
, 2
that x'GX > a||x| for x - x# | where 2 >0. Then the proof of the

correction procedure in Theorem 4 applies, and a solution exists, so that

the stated condition must be sufficient.

If the condition does not hold, then there is a non-zero X7
such that x'%« - N . Since  is positive semidefinite, this implies that
X'G = 0. . Thus, X is orthogonal to all the columns of G , and hence

to any linear combination of the columns of 4 . Since for an arbitrary
vector Z , (Z is a linear combination of the columns of G , 6Z is
orthogonal to X . X7 cannot be orthogonal to any vector (/ in which
the signs of all //; agree with C(W,), and hence it follows that there cannot
exist vectors . and // suchthat 52 ¢/ . This mean s that there
exists no solution to the classification problem, so the condition given must

be necessary. Q.E.D.

COROLLARY: For an ~z -system, the condition that there exist no

non-zero vector X7 such that b;X# 7 for all ¢
is equivalent to the condition that there exist 7 and
o such that - // (where 7/ 1s in the same orthant

as (V). Alternatively, this condition is equivalent

to X'6X + 7 for all non-zero X%
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THEOREM 10: Given a 7" -perceptron, and a classification (W), a

necessary and sufficient condition that the error correction
procedure reach a solution (in finite time) is that there
exists no non-zero X such that b; x# = ¢

for all ¢

PROOF': For the 7 -system, the normalized G matrix consists of

elements

/ ‘. : /
9,/'£ B nJ'»é - Na_ nJ‘ né Z a; (SJ'/) QL"(S‘Q) - _N—a— Zf CL;(SJ-) a:(SA)
5 [, h

4
It is readily seen that G is symmetric. For any n -vector X , X GX

is given by

X GX = Z /,j. 2’,{ 9\/4
Y' £
)

Z I'J' ’YA? ﬂ'*/.)‘j') 0;/5[) - /—v_/ 2 '-YJ' tg 07(61/) a:(sﬁ)
l.),j';g a h'1.7~/.’£

We now define h*('X/‘ as

From this, we see that

Z [ﬁ; (X = b '/Xﬂ : L [ﬁ r‘x)]z— N, [‘VC Z hy (X)l

L {

% Py I X / . . /0 E s
= Z IJ- X ﬁ Q; (JJ-/ a[ (*-),4) - -/v’b- Z{é )J. )& al. (b‘_/,) a’h (-'6)
Crir # by,
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Hence X'ex =) [/o; (x) - ‘n“(X)] -

L‘

From this it follows, first of all, that < is positive definite or positive
semidefinite, as was the case for the « -system. Secondly, it is seen

that X Gx = O if and only if §&,(X) = ¢ forall ¢/ . The proof now

proceeds exactly as in Theorem 9.

COROLLARY: For a " -system, the condition that there exists no

non-zero vector X #  such that b; X# = r for
all ( is equivalent to the condition that there exist Z
and (/ suchthat 6Z - ( (where // is in the same
orthant as = «V,; ).

In practice, it is often possible to show that a given perceptron
does not permit a solution to a given classification problem by substituting
the classification vector itself, ¢ (W) , for the vector X# in the above
theorems, and computing the ‘5[ . If these turn out to be zero for all
A-units, then no solution exists for either the alpha or gamma system. If
they are a constant other than zero, a solution. may exist for the alpha
system, but not for the gamma system. If they are not all identical, then
a solution may exist for either system. While it is sufficient to take the

#

components of X to be integers, the vector with all components x . = £ {

is not always sufficient. For example, if the C)E/S[ ) matrixis ;1 1 1
(11 1
\l 11

the b[ will all be anihilated by X = (1, -2, 1), but not by X = (1, = /s /).
The condition for the rv -system is equivalent to the requirement that there
should be no vector in the same orthant as (W) which is orthogonal to the

linear manifold spanned by the activity vectors of the A-units.
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6. Q-FUNCTIONS AND BIAS RATIOS IN ELEMENTARY PERCEPTRONS

Thus far, we have been mainly conéérned with the general

""qualitative'' properties of elementary perceptrons. In the present chapter,
the groundwork for a quantitative analysis of their performance will be
presented. In the theorems of Chapter 5, it was shown that the existence
and attainability of solutions, in an elementary perceptron, depends strongly
on the properties of the ( -matrix. Each element of this matrix, g¢,: ,
is a measure of the generalization of reinforcement from stimulus S; - to k50
This generalization coefficient, 9:; varies with the measure of the set of
A-units which respond jointly to 5, and S Until now, the actual
quantitative measures of these sets have not been taken into consideration,
and only the formal properties of the matrix G have been considered. The

@ -functions, which are introduced in this chapter, represent the probabili-
ties that an A-unit in a specified class of perceptrons will respond to a
particular stimulus, or will respond jointly to a designated set of stimuli.
These () -functions not only determine the expected values of the generali-
zation coefficients, 9[J' , but enter into the analysis of variability of

perceptron performance as well, as will be seen in the following chapter.

6.1 Definitions and Notation

The (7 -functions, defined below, are always specific to a
particular class of perceptrons in which the origin point configurations of
the A-units have been selected according to some designated set of rules
from a specified S-set or retina. The functions @ are defined only for
simple A-units, a; , which are said to be active if the algebraic sums

of their input signals, oz; . are equal to or greater than their thresholds,
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e; For such A-units, @ represents the probability of drawing an

2

A -unit at random from the specified distribution which responds to each of

a specified set of stimuli. The notation employed is as follows:

Q; = probability that an A-unit in a specified class of
perceptrons responds to stimulus S, .
o= robability that an A-unit in a specified class of
‘J p Y p
perceptrons responds to stimulus S; and also to
stimulus S .
By em = probability that an A-unit in a specified class of

perceptrons responds to each of the stimuli §,, Spyene

6.2 Models to be Analyzed

Three types of models will be considered which differ in the
rules by which connections are made between S-units and A -units. It turns
out that for the three cases, the distribution of input signals to the A -units
is expressed in terms of binomial, Poisson, and normal random var- ables,

respectively. These models are therefore named binomial,Poisson, and

Gaussian models.

6.2.1 Binomial Models

In a binomial model the input signal, o , received by
unit 2 ; , is distributed as the difference of two binomially distributed
random variables. This model cheracterizes a type of perceptron in which

each A-unit receives a fixed number of connections from the "retina',
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(a) BINOMIAL MODEL, WITH x =3, ¢ =2

o |
o
o 5 INPUT CONNECTIONS
: % T0 EACH A-UNIT, WITH
o RANDOM ORIGINS
o
o
&
S-UNITS A-UNITS

(b) POISSON MODEL, WITH CONSTRAINED ORIGINS

[ — 5
o
0090
5 OUTPUTS FROM o g 00 0
EACH S-WIT, | 0 g &2 4
WITH RANDOM 0009 g p
TERMINATIONS g g o)
5 fa)
L
S-UNITS A-UNITS

(c) POISSON MODEL, WITH RANDOM ORIGINS

i

O000CO0O0
000000GC
000
[+1.l
000000000

0000000

|

S-UNITS T A-UNITS

ORIGIN AND TERMINAL POINTS
CHOSEN AT RANDOM FOR EACH
CONNECTION

Figure 6  ILLUSTRATION OF TYPICAL S 70O A-UNIT CONNECTIONS (ARROWHEADS
INDICATE RANDOMLY SELECTED TERMINATIONS). IN GAUSSIAN MODELS,
THE VALUES OF THE CONNECTIONS (SHOWN HERE AS # /) ARE NORMAL
RANDOM VARIABLES.
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consisting of exactly X "excitatory' and , "inhibitory' connections. Each
of the excitatory connections has the value +l1, and each inhibitory connection
has the value -1. The threshold, ¢ , is assumed to be fixed for all A-units.
The origins of the connections to an A-unit are selected independently, with
uniform probability, from the entire set of S-units (or retinal points).
Specifically, a set of equiprobable origin configurations can be constructed
as follows: Let there be # connections, numbered from 1 to ¥ . Let the

S-units be numbered from 1 to A, . Then the set of all possible sequences

of ¥ integers, each having a value in the range /£ n £ N, corresponds

to the complete set of A-units. In this model, the number of distinguishable
’/N'L+X'f\/NA‘+(j—/)*
/ .
: U

A -units possible for a retina of A, points is .

7

In the binomial model, ¢ functions do not depend on the number
of sensory units, but on the fraction of them which are illuminated. A variation
of this model has been analyzed in Ref. 79. where the additional constraint is
introduced that no two connections to a single A-unit can originate from the
same S-unit. It has been shown that for moderately large numbers of S-units,

this model is practically indistinguishable from the true binomial model

described above.

6.2.2 Poisson Models

In a Poisson model, «¢; 1is distributed as the difference of
two Poisson-distributed random variables. In this model, it is assumed
that the number of input connections to an A -unit is not fixed, but is a
random variable. The model corresponds to one of two situations, the

equations for the 7, -functions being identical for both:

¢
The derivation of this formula can be found in Feller, Ref. 21, page 52.
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(1) In the constrained origin model, each S-unit emits a fixed number of

output connections, consisting of ¥, excitatory, and l)g inhibitory connections
(with values +1 and -1, respectively). Terminal points are selected at random
from a set of A, A-units. For the model to hold exactly, A, and N,
should both be infinite, the ratio N, /Nu being a paramevter of the system.

For finite Ny and N, , the model remains a close approximation.

(2) In the random origin model, a set of /| excitatory and A inhibitory

connections are each independently assigned an origin and a terminus at

random, from a set of S-units and A-units, with uniform probabilities. In

this case, for the model to hold exactly, the numbers ~,, NL/ and Ne

Ny + /v,
should all be infinite, with —). 'y being a parameter of the system;

as in the previous case, however, the model is a close approximation for

finite systems.

In the Poisson model, for Case (1), the number of possible A-

R . , . lvA'n N
units is B ‘. ;‘j AT . For Case (2), the number of

: . . N, . . Ny,
possible A -units is (Hygt 1) (5 00y

The binomial model, the

constrained-origin Poisson model, and the random-origin Poisson model
yield increasingly large sets of possible A-units, for the same numbers of

S-units, A-units. and connections.

6.2.3 Gaussian Models

In the Gaussian case, ~ , is distributed as the difference
of two normally distributed random variables, i.e., «/; is normally
distributed. While both of the above cases converge to a Gaussian model
as the number of input connections to an A-unit becomes large, we shall
be concerned here with a model in which the number of connections reria’'as

finite, but the values of the connections are normally distributed.
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6.3  Analysis of @/

For both the binomial and Poisson models, ¢; , the probability
that an A-unit is activated by stimulus §; , is given by the probability that

the total input signal o/ is equal to or greater than the threshold, @&

Specifically,
(6.1)
Emax E-6
G0i = D Pla) =) PUE)PI) =) ) PulE) B(T)
X2 6 £-I26 E=6 I=0
where (;:’ for binomial! model
Emar = :
co for Poisson model
P (E) = probability that exactly E of the excitatory connections

to an A-unit originate from active S-points.

probability that exactly I of the inhibitory connections

I '

to an A-unit originate from active S-points.

For the binomial mode],

Py (E) = (71 A’l-:\/—,(’[)y_F
£/ (6.2)
SR 72 WD S y-1I
) = \Z,) R:-“(1-p)
where /. = [raction of retinal points (S-units) activated by stimulus S;

For the Poisson model,

_ . F
(k; 7) -R: ¥
.o

PelF) = ‘
. F! (6.3)
. i
Y pen (/\)L 9) = PL' 1:/
/'y(I) = “f7 — ° &
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where ¥ = Nlr/’, = expected number of excitatory input connections
to an A-unit.
y = /vy/,va = expected number of inhibitory input connections

to an A -unit.

/() for the Poisson model can be expressed alternatively by
the following identity (pointed out by Prof. H. D. Block}):
o =y, = 02
/ . ) - K- 7s = s
Plo) = Pile-ii=nmp - o ‘(WW( 3) I, (20 V77 )

/
yi

Where 7, (¥) 1is a Bessel function of an imaginary argument, given by

< (x)0F

] 2 LTp g

I, (v L. - X
p”) Z,7 Almo )i ¢ J'/_, (ix)
y =

The use of this equation makes it possible to compute .} -functions

for the Poisson model by hand, with the aid of tables of Bessel functions (c.f.,

Ref. 37, pp. 224-233).

For the Gaussain model, equation (6.1) requires an additional
factor representing the distribution of value for each of the connections.

Specifically, if the absolute values of both excitatory and inhibitory connections

are distributed with mean / and standard deviation o , we have
. e
/'ma/ -[max
@y Z Z Pelf) Py(L) ¢ (Dg,r)dD
£=0 I=0 feles
D=8
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where

F,(F) and 'Dy (I) , in equation (6.4) are given either by (6.2) or (6.3),
depending on whether the number of input connections to an A -unit is fixed

(as in the binomial model) or random (as in the Poisson model}.

Figures 7 and 8 show representative families of curves for @;
as a function of &, , for the binomial and Poisson models, respectively.

Note that both models are very similar in their basic characteristics.

Specifically:

Lo In all cases, for +#- .7 and - - ¢, ¢/, increases monotonically
with £

2. For purely excitatory models ., - () ! goestol.0as A;

approaches 1.0. (Figures 7a and 8a).

3. For models with & > »-+, ) goes to zero as 4 approaches 1.0.

(Figures 7b and 8b).

4. For r -y , (- tends to remain invariant except for very small or
very large values of - . The range over which «/: tends to
remain constant is increased if the number of connections becomes
large (Figs. 7c and 8c). In the limit, with small # and large x

and ¢ , (' approaches .5 for all values of 4. except 0 and 1.
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Keeping x fixed, then for small & , {; is generally greater

(%]

for the binomial model than for the Poisson model. For large &, @

is greater for the Poisson model.

6. For the binomial model, Q. = 0 for x < & while for the Poisson

model, (); =0 onlyif %= 0 .

6.4 Analysis of @

@;; 1is the probability that an A-unit is activated by each of

S ; J.

two stimuli, 5, and CJ- . For both the binomial and Poisson models, (¢

can be expressed by the equation:

(6.5)

O‘J = Z P’C (EL" EJ"é‘c) Pg(I[i IJ';IA)
(B0 5 18 5 = ke =l (G
bt bo-I:-1.26

where & = threshold of A-units

£; = number of excitatory connections originating from points
illuminated by 5. but not by S5;

EJ' = number of exc'itatory connections originating from points
illuminated by S, but not by I,

tc = number of excitatory connections originatihg from points
common to 5; and SJ-

I; = number of inhibitory connections originating from points
illuminated by 5(- but not by SJ-

IJ- = number of inhibitory connections originating from points
illuminated by LJ' but not by &

I[ = number of inhibitory connections originating from points

common to 5[ and 5j
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The point sets involved in the analysis of Q[j are illustrated in Figure 9.
For the binomial model, the required probabilities are given by the multi-

nomial equations:
x /!

. . = z .E" EJ. E.C -4~ =
px(g"EJ’EC)'5-,/5~,/Ec,/j'x-5---g-—[C)/ At A (1-A-A-C)

X-E;-E-E,

. (6.6)
/ I. I CIi-r-
2! A ‘A~["C[£(/-A‘-—AJ--C)V To-ij-I,
I[/IJ'/IC/(‘.J']L'_'[J'—Ir)! .

Pyl I;,1.) =

where = proportion of retinal points illuminated both by 5- and .- ;
A, = K.~ where £ is the proportion of retinal points illuminated
by S-
A; = K; - ( where £ is the proportion of retinal points illuminated
by 5

For the Poisson model (where » and ¢ are the expected numbers of

excitatory and inhibitory connections to an A -unit),

-1 - x4 - XA

A A £ - o a (5
:-. _— 7 .. “a [ g 7 ! Ap J &7 . vVioe N '-l". [:
PX(F;’/\/"FJ'/ (/L./f‘/./—l ) ¢ rA e ((/IJ)l( {re . (6.7)
, -1 =74, Lo =GN, I =5C,_ I
of et v roprn e I i AT gl S e
Vi g ¥ [ . ' ” H
As in the case of (- , the Gaussian model for ;- requires

an additional factor representing the normal distribution of connection values.

The components of the input signal, ~ , which originate from the unique
S-units in ¢. , the unique points in 5, and from the common retinal
set are designated /' £, ,and /., respectively. By analogy to
(6.4),
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p; = (E:-1;)
=6 L)
b, = ([A/:'Ir)
p, = by =Ly
oy = (Ep+Ip)o”
QD) = P (D[;));;)) , defined as in (6.4).

A \
TS IV ) SR I (6.8)
e z Z_t ! i 0O ) ' /e’ 7117(.)

¢ 4

i ) (> ¢] & ey
7 2
° / / / i ;1 ) (Dl/Dt‘,‘l G(.D/} (//JL A D[’ c/DJ‘
% v
[ = - (r’1 € - ':/.

S P S e

J
For some purposes, the distribution of the input signals, ~ - , and v, 6 , is

[

of interest. The joint probability, ,[)(F\/l‘. v, s given by

- . R ~ . (6.9)
Z__.J - o/ o 'J.’/L ‘,/'/( /l.' 'l.,’ll ) I '/ ((:_".—.' i ) ‘ (\"j- ./l_ ),:///(

Tt should be noted that « -« - is a special case of these equations, for

09 )

which 4. - ; .. Tables of fithis for binomial and Poisson models

W

have been published in Ref. 87.

Figures 10 and 11 illustrate the quantitative properties of ..

as a function of ¢ , the measure of the intersection of stimuli ‘- and ;}/'

on the ''retina'. For convenience of representation, ¢ - is actually plotted

L}
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as a function of the relative intersection (or proportional intersection}), <;//=/ )

R; and ,PJ- being equal for all cases shown. Note that for (/k =/ ,

& = ¢ = ¢ . The main features of these curves are:
1. In all cases, oy increases monotonically with
2. For large & , O[J tends to remain close to zero, except for

stimuli which approach perfect identity ( C/P close to 1.0).

31 For large values of # , Q[j tends to accelerate more rapidly

as ( approaches 1.

4. For the binomial model, (Q);J- for disjoint or well separated stimuli
( ¢ =~ 0 )may have a maximum with respect to # . This effect
is not found in the Poisson model. (Figs. 10c and 11:.)

3. For equivalent parameters, ¥ tends to show a sharper ''shoulder"

in the binomial model than the Poisson modei.

The second of these properties is an important factor in
determining the discriminative capabilitv of a perceptron. It is shown best
in terms cf the conditional probability, (‘7[-“- , that an A -unit which responds
to = also responds to 5, . Q 1s equal to 0(-.’-/ "JJ- , and is shown for

several typical cases in Fig. 12. Note that for large values of & , the
probability that an A-unit vesponding to ’; responds to a second stimulus,
S; » 1s virtuully zero, unless the stimuli approach perfect identity. The
difference vetween the hinomial and Poisson models is shown most clearly

in Figures 12{a) and 12(b). Figure 12(c) demonstrates that the conditional

probability depends only slightly on stimulus size. Additional curves for
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these functions can be found in Refs. 79 and 80.

In analyzing the gamma system, it will be seen that the

conditions under which .. (.«  are of particular interest, since for
the gamma system the expected value of .- is zero for such conditions.
In the binomial model, ¢ - - 7 if eh =Rk PJ’ . This condition

will tend to be met if the stimuli are randomly chosen sets of S -points,
the expected intersection of any two such sets being equal to the product of

the measures of the sets. It can readily be seen that under these conditions,

the probability that an origin point which is in §- is alsoin §; 1is the same

as the probability that an origin point which is not in 5} happens to be in 5.

in other words, the profmbility that the origin of a connection is in & - does not

depend on whether or not it is in - , and consequently the response to S
is independent of the response to 5. , yielding "*"fj =00, In the Poisson
model, however, (.- -7 only if C- (O (i.e., for disjoint stimuli) since

t toYy

the connections received from any disjoint subset of S-units are independent

of connections (or signals) from any other subset.

6.5 Analysis of /¢

In the following chapter, it will be seen that the expected responses
of a simple perceptron can generally be determined from the functions @,

and (/:- . The variability of performance in a class of perceptrons, how-

¥

ever, will be seen to depend on the joint probability, 7. ;4 » that an A-unit
| responds to each of three stimuli, <  , -, and e o The equations are a
straightforward generalization of those employed in the last section for ¢,

Specifically, there are now seven excitatory and seven inhibitory signal

components to be considered:
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r; = Excitatory signal from S-units responding to .

but notto §: or 5;6
J

£- = excitatory signal from S-units responding to §-

but not to 5, or 57@

£y = excitatory signal from S-units responding to $,
but notto S. or S

_»“!.J. = excitatory signal from S-units responding to S
and 5. butnot Sg

t:y = excitatory signal from S-Apoints responding to =,
and 7, butnot S;

'FJé = excitatory signal from S-points responding to SJ'
and S¢ but not I

/‘L-M - excitatory signal from S-points responding to all

three stimuli.

Inhibitory components are defined analogously. This yields the equation:

, Z_‘ _ o : o ..y (6.10)
(ﬂ’,l, ﬂ/ Sy ; ,"'/J ) [:6’ FL‘J')f(.Z N Ajr( P:'v’ ([l ' 1",)~-’/j;/,"l'; [(.é.‘j,‘ﬁ.“jnllrﬁ)
(%
T
! J
‘C)”:/I-
where
= . oo, = 7. - = [ -
™, L.+ /_:/ * 'Fu” tNE T I ]L/£
/./I = /_/ ! /:lvll' +€€ * lp/z -IJ —rth[Jég‘_ [JL
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The multinomial and Poisson probabilities employed in (6.10) for the
binomial and Poisson models, respectively, are obtained by extension
of (6.6) and (6.7), with appropriate measures for the various double and

triple intersections among the stimuli.

6.6 BRias Ratios of A-units

Bias ratios were defined in Section 5.4 as the ratio of the
number of stimuli in the positive class to the number of stimuli in the
negative class, which activate an A-unit. In Theorem 2, it was shown
that there must be some variation in the bias ratios of the A-units in a
perceptron, if a solution to a given classification is to exist, and Theorems 9
and 10 showed that the closely related ""bias numbers' yield necessary and
sufficient conditions for solutions. Clearly, the distribution of bias ratios
depends on the probabilities W -..» , that the A-units will respond to
various possible sets of stimuli, oSS Rather than undertake
a detailed a~nalysis of bias ratios, empirical data are presented for a typical
case, to illustrate how we might expect the ""responsiveness' of A-units to
ditferent classes of stimuli to be distributed. These data were obtained by
a Monte Carlo procedure, in which 10,000 A -units were tested on a digital

computer to determine to how many stimuli of each cless they responded.*

%
The program was written by A. Geoffrion, for the Burroughs 220

computer at Cornell University.
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The "retina' consists of a 20 by 20 mosaic of S-units , and the stimuli con-
sist of 4 by 20 bars, placed vertically or horizontally on the retina, in all
possible positions. The retina is assumed to be toroidally connected, so

that bars placed near one edge of the field may re-enter at the opposite

edge. Thus, there are twenty possible horizontal bars (the positive class)
and twenty possible vertical bars (the negative class). This universe will

be used as a standard one in a number ¢f learning experiments.to be

analyzed in the following chapters .** Table 1 shows the number of A-units
out of 10,000 responding to each possible combination of N+ horizontal bars
and N~ vertical bars. An A-unit which responds to 4 horizontal and 6 vertical

bars, for example, is tallied in the 5th row and 7th column of the table. Each

A -unit had five excitatory and five inhibitory connections, and a threshold of 2.

For stimuli which are more similar to one another (in terms of
possible intersection of S-sets) than horizontal and vertical bars, we would
expect to find the—A-units less well distributed,and a greater concentration
around the diagonal. One would also expect that in a universe in which the
stimulus classes are less symmetric in their properties, the distribution
of A-units would be less symmetric than that shown in Table 1. Table 2
illustrates both of these features. In this case, the ''positive' class
consists of 4 by 20 horizontal bars, just as before; the ''negative' class,
however, consists of a set of 6 by 20 horizontal bars. Again, there are
twenty members of each class, but the maximum intersection possible between
stimuli of the positive and negative class is much greater than before, and the

size difference introduces an asymmetry which was not previously present.

desie

The toroidal retina has the convenient property of being unbounded and
isotropic, with a finite surface. Any relations which hold for a set of
stimuli projected onto the retina hold equally well if all stimuli are
displayed by any combination of horizontal and vertical translations.
This model (with Born-von Kirméin boundary conditions) is easier to
analyze than a spherical retina which has similar properties.
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TABLE |

JOINT DISTRIBUTION OF 10,000 A-UNITS, WITH RESPECT 10 KUMBERS OF
HORIZONTAL BARS AND NUMBERS OF VERTICAL BARS TG W.CiH THEY RESPOND

N~ /
(VERTICAL "ARS)

0 l 2 3 4
0 287 326 349 Sl 374 ‘
| 315 392 378 376 206 :
o 2 325 417 4y | 295 251 :
3 324 382 30: 353 43
(HORTZONTAL BARS) 330 351 21 140 305 '
5 68 87 "9 34 85 g
6 32 36 24 27 26 :
7 6 g - 7 6 ﬂ
8 2 y a 2 |
TABLE 2

JOINT DYSTRIBUTION OF 10,000 A-UNITS, WITH,. #GESPECT T0 NUMBERS OF
i x 20 AND 6 x 20 HORIZONTAL BARS 770 WHICH THEY RESPOND

_.;_." N :I

Tk 20 BARS
g “4 5 § 7 8 9 10 1l
. i | 0 0 0o 0 o 0
| i a6 4y M ) 0o 0 0 0
; 63 370 119 51 5 3 0 0 0
ot 3 6 534 2y |66 17 5 2 0 0
380 543 602 67 9 3 0 0

4 x 20 BARS) 4 !

{4 x 20 BAR )5 5 50 133 IS4 59 22 5 | 0
- 4 i 22 4B 24 24 4y 0 !
; ] ] 3 4 I 10 8 | 0
5 : 0 0 0 | |y ! 0




While the oint distributions il istrated here are not of great
utility in analyzirg perceptron pzrform .ce, they provide considerable
insight inco whir takes place wilthin . association system when a perceptron
learn: a c..ssification of st:muli  Units situated on the diagonal (i.e., units
which resp: nd equaliy t.- bolh ¢ asses of s*imuli) are essentially '"duds'’; they
~on.ribute little to « “iiscri: ination, and are as likely to be reinforced
nositively as negua“'vely. A-units which have a strong bias towards one class
or the other, h weve', (those situated in the upper right or lower left corners
of the tak’ev} arc v .eful "discriminators'. In learning a classification, the
perceptro. relir, on combinations of such units, transmitting large-valued

signais  to e,.wablish a bias towards the proper class when a stimulus appears.
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7. PERFORMANCE OF ELEMENTARY ¢ -PERCEPTRONS IN

PSYCHOLOGICAL EXPERIMENTS

So far, only the formal properties of elementary perceptrons
have been analyzed, without regard to particular experimental situations
or procedures. We are now ready to begin a quantitative analysis of the
performance of these svstems in '"'psychologiczl" experiments, i.e.,
experiments in which the procedures and observations are analogous to
those which might be performed on a biological organism. A number of

such experiments were defined in Part . Section 3.3. In this chapter, we

shall be chiefly concerned with discrimination experiments (c.f., Section 3.3.1),

since the capabilities of elementary perceptrons are largely limited to this

categorv. Before going on to other types of systems, however, we will

consider what kinds of behavior might be expected of an elementary

system in generalization experiments, figure detection experiments, and

other problems which were discussed in Chapter 3. The analysis of

discrimination experiments which is reported here is basically similar to

that which was originally presented in Ref. 79. The former models have -
been substantially simplified, however, and the analysis has been made

more rigorous, thanks lavgely to the work of R. D. Joseph, (Ref. 41).

7.1 Discrimination Experiments with § -controulled Reinforcement

a~

The first problem “o be analvzed s that of a discrimination
experiment in"which the perceptron :s presented with a sequence of stimuli
from an environment, ¥V , and is reinforced for each stimulus in the

sequence in accordance with s predetermined classification, ¢ (W) , with

the reinforcement control constant, ¥ , taking the sign of the required




response. The perceptron is then shown a test stimulus (S,) and the

response to this stimulus is determined. The measure of performance for

a class of perceptrons (characterized by the parameters N, , 6 , x ., and

¢ for a binomial model or by /\/A/Na, 9 , ¥ ,and y for a Poisson model)
is the probability that a perceptron from the specified class will give the
correct response to 5, after having been "trained' with the specified

sequence of stimuli.

i Il Notation and Symbols

_ .th | } .
S. = the J stimulus in the environment

. t1if o is in the positive class

-1 if fj 1s in the negative class

,

. . th - . =
J 1 if the [ A-unit is active for SJ’SA""’ and 5

‘7'[ \L'. Y ]
[ 0 otherwise
P f—a;-/,j 4..x) - probability that a;(ﬁ@ ex) =
(as defined in Chapter 6)
T duration (number of stimuli) of the training sequence
- ) . th .
77 (T) value of the connection from the ¢ A -unit after the
training sequence
Copml(x) r,‘-‘,. (x,7) ~ a/(x),.(T) = signal received by the

R-unit on connection c,,
when test stimulus 5, is
shown after the training
sequence. The time 7 will
be understood unless other-

wise specified.
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Uy = Xy (T =Z c‘-:,(x) = total input to the response unit when 5, is shown
]

after the training sequence. For present purposes,

the symbol /s, will be used, as in Chapter 5. Time

/

7 is understood unless otherwise specified.

In terms of these symbols, the reinforcement rule for a quantized
& -system, with S -controlled reinforcement, can be represented by the

following expression for the change in 2/,  when stimulus S5 is shown:

x o
Avip = £ 061)

7.1.2 Fixed Sequence Experiments: Analysis

The first case to be considered is that of a fixed training sequence,
in which a definite sequence of stimuli ( ¢, , j", b Oy ) is shown to the
perceptron. In a later section, random training sequences will be considered.
The fixed sequence consists of a fixed (though not necessarily equal) number
of showings of each stimulus. For < -perceptrons, the order of occurrence
of these stimuli does not affect the results. All values </, are assumed to

be zero initially. The following analysis and theorem follow the treatment

of Joseph (Ref. 41).

If a given perceptron is shown a training sequence, it will place
a test stimulus J, in the positive class if « , is greater than zero, and in
the negative class if v, if less than zero. For the given perceptron,

training sequence, and test stimulus, t/y is a determinate number,
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Over the class of perceptrons, however, ., is a random variable.

In order to determine the probability that a perceptron from the specified
class will classify & correctly, we must know the probability that «,,
has the correct sign. In order to obtain a conservative bound on the
probability of correct response to 5, , without making any assumptions

about the distribution of ¢, , Joseph makes use of the Tchebysheff

£
incquality, which states that for any random variable 2 with mean ..
3

i 2
and variance 7 ,

Consequently, if the ratio « 2('(1.1)/ ol :('LIX)‘can be made arbitrarily large,
the probability that «, for a randomly selected perceptron will agree in
sign with its expected value over the class of perceptrons can be made

arbitrarily close to I . It thus becomes important, first of all, to know

whether or not the expected value of (¢,  has the proper sign.

-2
d

- 3
I+ 0"

Y3
3=

Joseph, has pointed out that if the one-sided inequality 'Dr{; e ii o
is used in place of the two-sided inequality 7, {|z-w 2/} < =2,
slightly sharper bounds may be achieved, i.e.,

, .
/ P - T
P lgonfen pmm o i om0

4 .
3713 < 0/4 ! - if <0

14005/ 4
In the range of interest, this additional sharpness is insighificant..
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DEFINITION: S, will be called a positive stimulus (with respect to a

class of perceptrons, an environment, classification, and training sequence)

if the expected value of i, agrees in sign with the assigned class of Sy

In terms of the symbols introduced above, 5'/ is a positive stimulus if
o, E(i,) ~C
I B

The expected value of for an ¢ -perceptron (assuming
that all A-R unit connections start out with zero value) is obtained as
follows. Let L = the number of times stimulus 5, occurs in the
training sequence, divided by 7 , the total number of stimuli in the
sequence (i.ey. , the proportion of the training sequence whichis 5. ).
Then the value of the connection from unit =, at the end of the training

sequence will be (since the magnitude of ? is taken to be 1)
e = TZ oy Pj A, (7.1)

where the sum is over all stimuli in W . Consequently, summing over all

A-units, the input signal to the response unit when the test stimulus 5,

occurs will be

S . :
” fLL ER TR D DS (7.2)
[
The expected value of , is therefore given by
Fu, - EVZJ DA Bl ()
¢y
\ » ~ ¥, RV
= 7/\/,1 Z{/{/ /j ‘\/ p
J
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From the above definition, it follows that S, is a positive stimulus (and

will tend to be correctly classified) if

From Equation (7. 3) it is clear that £, increases linearly
with % . Let us now consider the variance of ., . This is obtained

from the equation:

2 - ¥ N [ >
p] _//IX) :Z ol ~(/’f[f.(7.‘)+Z‘ cov. 'l/-‘,. /) f[-/,.()’_)jl (7.4)

{ E

For the conditions currently being considered (an ¢ -system with a
predetermined training sequence) the only source of variability in C;. (x)
1s in the selection of the origin point configuration of the unit o . But if
we assume (as in all models thus far considered) that the A-units are all
chosen independently from a distribution of admissible origin configurations,
the covariances will all be zero, and o "'{rl-'r (x)) does not depend on [
Therefore, the general equation (7. 4) reduces to

52 Ly - /-/_Irr"'(l:"'*,-.’-”f) - N, ifr ()/,- = r(yfl (7.5)

(See Rosenblatt, Ref. 79 , pp. 82-83, for a more detailed algebraic

discussion of this equality). Now, for an v -system,
and
2
= 2 \ L 13 .
) =T Z, L A1 g Prbe a; (;27)
/ 7

This yields, for the required expected values in (7.5),
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to

(1)

it

ek

o

AN -
MM VIG I
Tz

and
2 ¥ . - =
Eerp(2)=1 2 ,2 P05 Pe Oy Gl
J R

Substituting in (7.5) and simplifying, this yields

(7.6)

Note that the variance depends on «'-, . , whiie the expected value depends

only on  (/;, This variance, like the expected value, is of the order of
N, - We are now in a position to prove the following theorem (due to

Joseph):

THEOREM: Given a class of elementary « -perceptrons, a finite

stimulus world W , a classification C(w) , anda
training sequence; then for every € > 0, there exists
an N,(¢, suchthat if // > w,(¢) , the probability
of selecting a perceptron which will correctly identify
the class of every positive stimulus will be greater

than - ¢

PROOF: From the Tchebyscheff inequality, we have seen that if
2 j
se i p)/4 /"//) can be made arbitrarily large, the probability
that Oms will agree in sign with its expected value over

the class of perceptrons will approach unity.
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It has also been demonstrated (Equations 7.3 and 7.6) that both (/¢

and o L&Y, are of the order of A, ; therefore, "D('(L;,/Vrf' ‘!K'ux)

will be of the order of A/, . Thus, for each positive stimulus, 5, ,

the probability that // . agrees in sign with /.., can be made arbitrarily
clost to 1 by choosing /N, sufficiently large. Suppose there are » stimuli
in .* . Then, for the g th positive stimulus there exists a quantity N; (c)
such that if ~V, - N i¢) , the probability of selecting a perceptron
which fails to correctly identify - will be less than </n . If we let

Neled = 0wk 2] (e) , the condition required by the theorem is satis-

[y

fied. Q.E.D.

From Equations (7.3) and (7.6), it is seen that for a given set
of stimulus frequencies +- , the ratio ..~ ‘ does not depend on
Thus any number of repetitions of the same training sequencé can occur
without affecting the performance of the system. Since % 5% varies
linearly with NU , the normalized ratio /“,, P2 ‘ .;’; forms a convenient
measure for the comparison of different perceptron models. Some numerical

values for typical cases will be considered in the following section.

While the above analysis permits us to obtain a rigorous lower
bound for the probability of correct identification of by a randomly
selected perceptron, it does not actually yield an estimate of this probability.
In order to estimate the probability of correct identification of 5, , it will
be assumed that ., 1is normally distributed. The justification for this
assumption was discussed in Rosenblatt, Ref. 79, and subsequent analysis

has shown that the approximation is very close, even for perceptrons with a
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small number of A-units. Assuming a normal distribution, we have for
the probability of a positive response to 5,
7 ey MY

P e D6 ) s Bt (7.7)

= 4 “Neiey)

z 2

X
2

where ¢(z) = )’TI_D‘_ e o x
- o0

Note that the above equations do not depend on whether the
perceptron is constructed according to the binomial model, Poisson model,
or any other other model, so long as the A-units are selected independently
of one another. The performance does depend on the (/ -functions, however,
which will be different for different models. From equation 7.3 it is clear

that any stimulus 5. will tend to be classified correctly if the average value

P
4

of - for - in Fhe same class as 5  is greater than the average value
of &+, for ¢ inthe opposite class from <, (If the frequencies F~-
are not all equal, each /-, must be multiplied by its appropriate frequency
in obtaining these averages.) From the analysis of (' -functions in the
preceding chapter, it is clear that this condition will generally be met if

the stimuli of each class have large intersections with one another (on

the retina) while stimuli from opposite classes have small intersections

with one another. The ideal situation would consist of two disjoint clusters
of stimuli, located in different parts of the retinal field, each cluster

representing one class. In order to discriminate two stimuli reliably

(i.e., to assign them to opposite classes) it is desirable that () - for
the two stimuli should be small, and particularly that the conditional

probabilities () I and (‘)J ; should be as small as possible. Figure 10,

(]
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in the last chapter, shows that this condition can readily be met if the
stimuli have a small intersection with one another, but becomes increasingly
difficult to meet as the intersection increases. This figure also shows that
a binomial model is better suited to the discrimination of gimilar stimuli

© -1, 1s apt to be relatively large even

f

than a Poisson model, where

for disjoint stimuli.

7.1.3 Fixed Sequence Experiments: Examples

The environment which was considered in the last section of
Chapter 6, involving twenty horizontal bars and twenty vertical bars on a
20 by 20 toroidally connected retina is a convenient one to use for a
""calibration experiment', by which different classes of perceptrons can
be compared. In particular, consider the following discrimination

experiment:

EXPERIMENT 1: Given a perceptron with 400 sensory points arranged in

a 20 by 20 toroidally connected array, or ''retina'’, let iV consist of the
twenty possible 4 by 20 horizontal bars, and the twenty possible 4 by 20
horizontal bars. Let /% be a classification which assigns every
horizontal bar to the positive class, and every vertical bar to the negative
class. Show every bar in 4 to the perceptron exactly once (or in a
sequence with /- equal for all stimuli). During this training sequence,
the perceptron is reinforced with S -'controlled reinforcement. Then

select one of the bars, , and determine whether the response is

R

correct, according to . U
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100
NUMBER OF ASSOCIATION UNITS (A, )

Figure 13 PROBABILITY OF CORRECT INDENTIFICATION OF A TEST STIMULUS BY AN
ELEMENTARY oc~PERCEPTRON, IN EXPERIMENT | (CURVES ALSO APPLY TO
7" '-PERCEPTRONS; SEE CHAPT. 8)

| | 1o | 100 T 000
NUMBER OF ASSOCIATION UNITS (A,)
Figure I4 PROBABILITY OF CORRECT INDENTIFICATION OF A TEST STIMULUS BY AN

ELEMENTARY o/ -PERCEPTRON, IN EXPERIMENT 2 (FOR TWO BINOMIAL MODELS).
CURVES ALSO APPLY TO 2 -PERCEPTRONS (SEE CHAPT. 8)
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Table 3 shows the performance ratios, IN,A j?,/u/2 , for a 100

A -unit binomial model - -perceptron, with various combinations of the
parameters ¥ and ., (2 = in all cases ) . The parameters » = 3,
=/ , ¢ =., appear to be optimum for this experiment, as can be

seen from the table. (Increasing the threshold results in a definite drop

in performance.)} Figure 13 shows the performance of several binomial
and Poisson model perceptrons as a function of #, . computed from
Equation (7.7). The top curve shows the performance of the optimum

(binomial) system. A comparison of the other two curves illustrates the

relatively poor performance of the Poisson model on this particular problem.

It should be emphasized that the parameters found to be optimum
in this experiment will not necessarily turn out to be optimum in other
environments, or other classifications. In general, it appears that as the
classes of patterns to be discriminated become more ''similar', (i.e., as
the maximum possible overlap between stimuli from opposite classes
increases) the optimum number of connections to an A-unit and the optimum

value of '~ tend to increase.

A more difficult classification of the same dichotomy has been

studied in the following experiment:

EXPERIMENT 2: With the same environment as in Experiment 1, number

the horizontal and vertical bars consecutively according to their position on
the retina. Let the classification (.. place all even numbered bars in
the positive class, and all odd numbered bars in the negative class. The

training and testing procedures are identica! to Experiment .
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TABLE 3
2
PERFORMANCE RATI0S (""_("‘_1)) FOR 100-A-UNIT ELEMENTARY os-PERCEPTRONS

Crz(uz)

(BINOMIAL MODEL) FOR EXPERIMENT | (HORIZONTAL/VERTICAL BAR DISCRIMINATION,
FIXED SEQUENCE). 6 =2 IN ALL CASES.

X (NUMBER OF EXICITATORY CONNECTIONS PER A-UNIT)

2 3 " 5
0 2.474 2.831 I.540 .93
| 2.063 2.912 2.104 1.349
J 2 1.708 2.805 2.479 1.773
(NUMBER OF |.406 2.592 2.670 2.140
INKIBITORY [.153 2.329 2.708 2.414
CONNECTIONS ¢ 941 2.006 2.630 2.579
PER A-UNIT) ¢ 767 1777 2.473 2.638
7 623 |.523 2.271 2.605

TABLE 4

PERFORMANCE RATI0S FOR 100-A-UNIT ELEMENTARY oc-PERCEPTRONS
(BINOMIAL MODEL) FOR EXPERIMENT 2. & = 2 IN ALL CASES.

X (NUMBER OF EXCITATORY CONNECTIONS)

2 3 4 5

0 .358 426 .328 274

| .365 ,502 436 .363

S 2 .362 .55l 526 451
(NUMBER OF 3 .350 .578 .596 .533
INHIBITORY 4 .333 .585 . 646 . 605
CONNECTIONS) 5 .310 578 .677 .664
6 .285 .558 .690 .707

7 .268 .529 .688 .736
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In this case, the two most similar bars to any test bar (those
which overlap it by 3/4 of its area on either side) are invariably in the
opposite class. Nonetheless, all stimuli may be positive stimuli under
these conditions, with a suitable choice of parameters. Table 4 shows the
ratio /uf/o’; for a 100 unit system in this experiment. Figure 14 shows the
performance of a perceptron with the same parameters as before (¥ =3, ¢ =/,

6 =.7) on this experiment, and also with the best parameters found to date

-

(v =%.y=7. 8=2). These parameters are the best set for x £ 5 and ¢y < 7 ,
but are probably not optimum, as it seems likely that a further increase in

both » and // would yield a further improvement in performance.

7.1.4 Random Sequence Experiments; Analysis

For the analysis of the performance of perceptrons trained
4
with random stimulus sequences, it is convenient to make use of an

unnormalized G-matrix (see footnote, page 75), where // -/ instead of

! N, . For such a matrix, in the ~v -system, .- = the number of
L S
units active for both ¢. and : , or
e = )i (7.8)
T 7

The mathematical properties of the unnormalized G-matrix are no different

from those discovered for the normalized matrix, in Chapter 5.
In a random sequence experiment, the training sequence is

assumed to consist of a series of /7 stimuli, in which each stimulus in

the series is selected independently of the others. The probability of
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d : : th g .
selecting stimulus 5J- for the ¢  position in the sequence is £,

for all = . We will let 5 = the number of times stimulus Sj occurs
in the training sequence. The random vector /» = (m,, rrip.-rm, ) will have

a multinomial distribution with T trials and probability vector

The training sequence selected is assumed to be

7Zr z(p/’pz”"’Fn)'

independent of the particular perceptron selected for a given experiment.
At the end of the training sequence, the input to the R-unit in response to

a test stimulus S, will be

ey = QL 9

J
Al = N . . . "
? ; 5% = \21("1)’/
i J
Therefore, the expected value over perceptrons and training sequences is

Eliy) = TN Y o5 (0.
e 7 Z/ 0 [J )z (7.9)

which is of the order of 7 //, . Note that this is identical to equation (7.3).

The variance over both perceptrons and training sequences is
given by

2 o -—
'J' (/1‘ ! A rrie ) ~:{-> Ve sl i\ (/77- (7 . 1) . )
v - ) S, _,/‘;l/J V. g -/"J' £ ‘-/Iﬁ
b plt

; A

Y‘ . , e P K 2, ™
‘[‘l/r)j/ [j(;'}),j)_/: (/ﬁJ')E /(7/\/)__[

Al 1 r . ) . -
r Z / L Pl 1[("’\/ ma ) [(YXJ' Tud)” E(”’J‘,‘ A=E ‘:(‘.77.,' ) 5(91 6)J
] S

J

(7.10)
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—_
For the components of the multinomially distributed vector m» we have
= . = T .
Z" (m\}) ! p\./l
.,_-(”_2) =7(1-1) = + 7 p-
=, pJ {J
£ r’//rzl' m(«) = T(/T-«/) /'J' /e
Let . , - number of A-units active for stimuli 5., 5-,..., 5, .
Ly o ¢ J
The symbol ~ over a subscript will be used to denote negation (e.g.,
g = the number of A -units active for stimulus 5]' but not for %, ;
ni g A Mg e rg ). From eguation 7.8, it is clear tkat for the ~ -system,
neroT g Now, any set of »’s which is exhaustive (every A-unit counted
in at least one nioy )s and such that each A-unit is counted in no more
From this it

than one Ny will have a multinomial distribution.

follows that

E/./X‘/' L= Na Wt
E/‘/ZJ' 2) = NO (Na_ /) ‘/*'J.XZ 4 N-L QJ”/
:’-(_“71‘/. grd) = ir_‘/”/;'ﬁi' e [ y Prée = P 7Aa ]
} Elrrg, ”féx) El B !

T .
+ - Vo K
Jéx e

i N LN -/)[/j- - ¥
2] ’ A

# ik e ™
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Substituting in (7.10), this yields

2 B - 7
) = T QD py Gy | (Mo 1) @ # 1]
/

AT 7 f 3 7. ].
+ TN, Z ; L, 08 Py 4_(,7'- /) oj%,r —('T*"'Va_/)(‘)jz ijjl (7.11)
J

. . S
The variance of «, is therefore on the order of TN, + 7 N, , at
. : . Ay, 3
maximum. Since the square of the mean is on the order of 7 AN, , the
202 .
ratio « o becomes indefinitely large as //, and T both increase,

and the Theorem stated in Section 7.1.2 is seen to hold for random training
sequences of sufficient length, as well as fixed sequences. As the length of
the training sequence, / , increases, the relative {requencies /n; /T will
approach the probabilities ., , and the performance of the system will
approach the performance in a fixed sequence experiment. As /A  goes to

infinity, the ratio .~  approaches

7.1.5 Random Sequence Experiments: Examples

As a 'calibration experiment' for comparing different
systems, the horizontal vs. vertical bar discrimination problem is parti-
cularly convenient. The random sequence version of the experiment is as

follows:
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EXPERIMENT 3: For the same conditions and classification as Experi-

ment 1, show the perceptron a random sequence of horizontal and vertical
bars, each bar occurring with equal frequency ( 4. = ! /10 for all bars).
During this training sequence, S-controlled reinforcement is used, and the
performance of the perceptron for an arbitrary bar, &,  , is then deter-

mined as before.

Figure 15 shows the performance of binomial model o -perceptrons of
three different sizes on this problem, as a function of the length of the
training sequence ( / ). The parameters « , + , and © are the optimum
values (3, 1, 2) found in Section 7.1.3. Further increases in /'  will not

appreciably improve performance in this experiment.

The effect of a '"frequency bias' on ~ -system perceptrons

is illustrated in the following experiment:

EXPERIMENT 4: The conditions and classifications are the same as in

Experiment 3, but the horizontal bars occur four times as frequently as

the vertical bars; 1.e., 2 % for horizontal bars and ."'/ for vertical

bars.

Figure 16 shows the performance of a 100 A -unit system on this experiment.
The upper curve shows the probability of correctly identifying a horizontal
bar, and the lower curve shows the probability of correctly identifying a
vertical bar. The correct response to vertical bars is actually suppressed

as training increases, due to the greater frequency of horizontal bars. The
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NO. OF TRAINING STIMULI (7)

Figure I5 PROBABILITY OF CORRECT INDENTIFICATION OF TEST STIMULUS BY BINOMIAL
o/ -PERCEPTRONS IN EXPT. 3 (RANDOM SEQUENCES)
(X=3,y=|,9:2)

——— T ——. S———— t— — f——

—

- | 2 8
~ " - MEAN PERFORMANCE | '

4 TEST WITH VERTICAL BAR (,o =.01)

. 10 100 1000
HO. OF TRAINING STIMULI (T)

Figure 16 PROBABILITY OF CORRECT IDENTIFICATION OF TEST STIMULI IN EXPT. U.
BINOMIAL oz -PERCEPTRON WITH A,= 100, X =3, y = |, & = 2.
P = .04 FOR HORIZONTAL BARS; .0l FOR VERTICAL BARS
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broken curve shows the mean performance on both classes, with test

stimuli drawn from each class with their appropriate [requencies. In the

following chapter, it will be seen that this performance can be considerably

improved ina 7 -system perceptron. It would also be improved for an
~ -perceptron if error correction training were employed instead of

S-controlled reinforcement.

7.2 Discrimination Experiments with Error Correction Procedures

The analysis and experiments in the preceding section deal with
S-controlled reinforcement experiments. In Chapter 5, Theorem 6, it was
shown that this procedure cannot be guaranteed to yield a solution tc a
classification problem, even though a solution may exist, whereas an error
correction procedure will always yield a solution if any solutions exist. The
error correction procedure would therefore seem to be the method of choice
in training a perceptron to discriminate between two classes of stimuli.
Unfortunately, the type of analysis which was carried out for S-controlled
experiments is not readily performed with error-correction experiments.

Consequently, all data on learning curves for error correction procedures

b3

come from one of two sources: simulation on a digital computer , and

performance of actual experiments on the Mark I perceptron at the Cornell

Aeronautical Laboratory (Refs. 29, 30, 31).

Experiments performed by Carl Kesler on the Burroughs 220 computer
at Cornell University.
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Two main sets of experiments will be described here, the first
with binomial model .. -perceptrons, and the second with perceptrons

having additional constraints imposed on their S to A -unit connections.

7.2.1 Experiments with Binomial Models

The following four experiments have been performed with
binomial model perceptrons (having fixed numbers of sensory connections

to each A-unit, with origins located at random in the sensory mosaic):

EXPERIMENT 5: The environment of horizontal and vertical bars used

in Experiment 1 is employed, and the stimuli occur in fixed sequence, first
showing all horizontal bars in fixed sequence, then all vertical bars, and
repeating the sequence until perfect performance is achieved. The error
correction procedure is employed, and the performance is tested at the

end of each sequence.

EXPERIMENT 6: The same environment and training procedure is

employed as above, but the stimuli occur in a random sequence, with

+  for each stimulus (as in Experiment 3).

EXPERIMENT 7: The environment consists of a set of triangles in all

possible positions on a toroidally connected 20 by 20 retina, and a set of
squares 1in all possible positions on the retina. The triangles and squares
each cover 80 of the 400 retinal points. The sequence is random, as in
Experiment 6, with . ! for each stimulus. (The set of possible
stimuli is generated by translations of a standard image; rotations are not

permitted. )
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EXPERIMENT 8: The horizontal/vertical bar environment is employed, as

in Experiment 6, with stimuli occurring in random sequence. A random
sign correction procedure is employed for training the perceptron (see

Definition, Section 5.6).

Figure 17 shows the results of Experiments 5 and 6, and includes
a theoretical learning curve for an S-controlled experiment for comparison.
The experimental curves show the mean performance for a set of 25 binomial
perceptrons with 300 A-units, and the optimum parameters ( » - -, ./ =~
5 = . )found in the preceding section. The same 25 perceptrons were
employed in Experiments 5 and 6. It appears to be characteristic thata
random training sequence leads to a more rapid learning rate initially, but
is overtaken by the fixed sequence performance as the duration of training
increases. Note that in both cases, the error correction method yields

considerably better performance than the S-controlled method.

Figure 18 shows the mean performance of a set of 15 perceptrons
on Experiment 7. The parameters are /, - - , « n , o,

& =2 . These were the best parameters tested, but are probably not
optimum. The learning curve for the horizontal/vertical bar experiment
(Experiment 6) is shown as a broken line for comparison. The slow learning
rate in this experiment is largely due to the large number of distinct stimuli
in the environment (800) compared to the number in the horizontal/vertical
bar environment (40). The increased number of stimuli means that a much
longer training sequence is required to guarantee a representative sample
of all stimuli, with a reasonably uniform coverage of the retinal field. A
further difficulty is introduced by the fact that the maximum overlap of a

square and triangle is much greater than the maximum overlap of a horizontal

and vertical bar, making the discrimination intrinsically more difficult.
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Figure 19 shows a comparison of the performance of 10
perceptrons on Experiment 8 with the performance of the same 10 perceptrons
on Experiment 6. In Experiment 8, the learning is not only much slower, but
the variability between perceptrons is greatly increased. Of the ten per-
ceptrons tested, two achieved perfect performance during the period of the
experiment, which was discontinued after 2000 training stimuli. Nonetheless,
each of the ten perceptrons would ultimately achieve perfect performance if
the experiment were continued (due to Theorem 5, Section 5.6). With the
directed error correction procedure, all ten perceptrons achieved perfect

performance within 300 training stimuli.

While the performance of an elementary perceptron with the
random sign procedure is clearly unsatisfactory for practical systems, it
should be noted that the existence of a consistent bias in the proper direction
still makes this a plausible component of a more reliable mechanism. If a “
"majority mechanism'' is employed (e.g., a threshold device which responds
to the difference of positive and negative signals from R -units)
to determine the '"'majority vote'" of /7 such elementary perceptrons,
connected independently to the same retina, a highly reliable system would

result. The error probability of this system would be:
'Ln/‘)]

g L gt

7 -

when # is the probability of correct response for a single perceptron

{as shown in Figure 19). -
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While the actual learning curve for error correction experiments
cannot at present be stated analytically, R. D. Joseph has obtained an upper
bound for the number of corrective reinforcements that must be applied,
where a solution exists. In the proof of Theorem 4, Chapter 5, it was noted

that an upper bound for the number of corrective reinforcements can be

expressed in terms of the quantity  , as follows:
2 . 2
£+ M
., (Friin) (7.12)
where '/ - maximum diagonal element of the G-matrix,
7 g o 7 .
~ ° minimum of the function F7/¢/ - ¥ /a | r'|" (as defined for

Theorem 4, Chapter 5).
¢ = Mk (as in Theorem 4, Chapter 5).

For the case which is of primary interest here, the process

starts from the origin, so that « PO . In this case, {(7.12)

simplifies to

7.2.2  Experiments with Constrained Sensory Connections

In all perceptrons considered thus far, connections from S-units
to A-units have had their origins randomly chosen from the set of all sensory

points, with equal probability. Such models will be called uniform input

distribution models (1.i.d. models). It has occasionally been proposed that

the performance of a perceptron might be considerably improved by the
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introduction of special constraints on the admissible origin point connections.
For example, the retinal connections could be made to resemble biological
systems more closely by assigning a ''retinal field" to each A-unit, and
limiting its choice of origin points to S-units within this field. A similar
procedure would be to construct a network of connections by assigning a
center at random to each A-unit, somewhere on the retina, and selecting
connections from a circular normal distribution about this center. Such

systems will be called normal input distribution models (n.i.d. models).

Further constraints might lead ultimately to specialized A -units, whose
input configurations are speciaily designed to make them responsive to
stimuli of particular shapes, or configuration properties. We will consider
one further constraint in this section: the case in which the excitatory and
inhibitory connections to an A-unit are assigned distinct centers on the

retina, with origins selected from a circular normal distribution about

these centers. This will be called the divided input distribution (d.i.d.)
model. The n.iid. model can be considered a special case of the d.i.d.
model in which the excitatory and inhibitory centers and dispersions are
identical.

In t};e general d.i.d. model, A-units are characterized by
seven parameters: r ,  and 4 as before, the expected distance
between excitatory and inhibitory centers (L ), the standard deviation
of this distance ( < // ), and the standard deviations of the normal proba-
bility distributions about the excitatory and inhibitory centers (»7v and sy ).
A number of experiments have been performed with such models in an
attempt to discover what sort of improvement might be achieved by an

optimum set of constraints on the sensory connections.
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Experiments 6 and 7 have been used for the study of constrained
input distributions. In the square/triangle discrimination experiment
(Experiment .7) the performance of the d.i.d. models never showed any
improvement over the original u.i.d. model. A large number of combi-
nations of x , « , and ‘) were tested with various discribution para-
meters, in an attempt to find the optimum system for ~» + , £ /U
The best performance was obtained {or a set of 15 perceptrons with x» = A4

p=s B, #- S a g o) &0 , v =7 ,and Ty =7
This is equivalent to an n.i.d. model with the same centers for excitatory
and inhibitory distributions, and o - 7 . The performance of this system
did not differ from that of the equivalent u.i.d. model by more than 1% at
any point on the learning curve, and was within 1/4% of the u.i.d. performance
at most of the points tested. The same stimulus sequences were used for
both models in order to make conditions as closely comparable as possible.
These results suggest that for large but spatially concentrated stimulus
patterns, little advantage is to be gained in an elementary perceptron by

imposing radial constraints on the origin point configurations.

In the case of the horizontal/vertical bar discrimination
(Experiment 6) a slight advantage was found for the d.i.d. model for the
parameters - ', 7AA" B/ A ARG o y T =2, Ty=H4,
On the basis of a number of simulation experiments, this appears to be
close to an optimum configuration for the d.i.d. model for this experi-
ment. [igure 20 showsthe results obtained from 25 runs with these
parameters, compared with 25 u.i.d. models with optimum parameters

Y. 4 /.= 7 using the identical training sequences. The

difference, although slight, appears to be statistically significant.
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The general conclusion from these experiments seems to be
that (for large stimuli) little is to be gained from special constraints which
affect only the dispersion, rather than the geometric form, of origin point
patterns in elementary perceptrons. A further variation of the model, in
which elliptical rather than circular distributions of origin points are employed
might be more sensitive to contours and directions of elongation in the stimuli.

Sic

No quantitative results are available on such a model at this time.

oK) Discrimination Experiments with R-controlled Reinforcement

In an experimental system with R-controlled reinforcement
{Definition 39) the reinforcement control system receives information about
the outputs of the perceptron, but receives no informatior. directly from the
environment. Such experiments are of interest in determining the "spon-
taneous crganization' tendencies of perceptrons. It is readily seen, from
theoretical considerations, that the performance of an elementary o -
perceptron in such experiments is unlikely to be of psychological interest.
In an o -perceptron, all y:; are generally greater than zero, so that
whatever response is associated to the first stimulus in a training sequence
will tend to generalize to all other stimuli in the environment. Conse-
quently, the perceptron, left to its own devices without any attempt to
change its responses, will tend to form a classification (i) in which
all stimuli in 4/ are either in the positive class or else all in the negative

class, with equal probability.

See Section23.1.2 for a reconsideration of this problem from the
standpoint of sensory analyzing mechanisms.

*In Ref. 82, such systems have been called "Class C perceptrons''.
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Two special cases are of interest, in which it is possible for
a dichotomy to be formed with both classes non-empty. In the first case,
some of the ¢, . coefficients are zero. This might occur in a system
with high thresholds on the A-units, so that some pairs of stimuli activate
-

no A-units in common, If S: and 5 are two such stimuli, then if 5

1s the first stimulus and 5 is the second stimulus in the training

sequence, it is perfectly possible that one will become associated to a
positive response, and the other to a negative response. If these are the
only two stimuli, or if there is no positive generalization from any of the
stimuli which become associated to one class to the stimuli of the second
class, this dichotomy may be stable. In general, however, one class is
apt to become dominant, eventually pulling all stimuli into a single class
as before. The second case in which a dichotomy might be formed is that
in which the values are not initially all zero, but are distributed with some
connections negative and some positive. In this case, the generalization
from the first stimulus will not necessarily wipe out an initial bias in the

opposite direction, and it is possible that a dichotomy will be formed.

While it is possible for dichotomies to be formed in the special
cases mentioned above, there is little reason to suppose that such dicho-
tomies would ever be of interest to a human observer. If the stimuli are
uniformly distributed on the retina, or uniformly clustered about the
center of the field, the 9:; coefficients which happen to be zero will
generally be unrelated to possible "meaningful'' classifications of the
stimuli, so that any division into two classes will tend to be randum,
and unrelated to any concept of "intrinsic similarity' of the stimuli. Thus

it is clear that in an elementary ¢ -perceptron, psychologically meaning-
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ful discriminations can be achieved only under the control of an experi-
menter, or r.c.s. which is capable of evaluating the correctness of the
perceptron's responses according to some predetermined scheme. In the
/" -systems, which are considered in the following chapter, somewhat
more interesting performances’inR-controlled experiments are likely to

occur.

7.4 Detection Experiments

In discrimination experiments, such as those considered in

the previous sections, the perceptron is required to give one of two responses
to designate which of two well-defined classes of patterns is present. It is
assumed that one of the two is always present, and that nothing else is

present which might confuse the picture. In detection experiments, a

single pattern, or class of patterns, is taught the perceptron as the "positive
class'", and anything else {such as noisy fields, arbitrary patterns, etc.) is
considered to belong to the '"negative class''. Moreover, the positive pattern
may appear with an admixture of background noise, irrelevant lines, or

other sensory material. While such detection experiments differ considerably
in their '""psychological' character from discrimination experiments, from a
theoretical standpoint they represent a special case of discrimination experi-
ments in which the training and the two classes of stimuli are highly asymme-
tric, the positive class generally being smaller but more thoroughly trained
than the negative class. Two cases are of interest: detection in noisy
environments, and detection in organized environments. These are

considered separately in the following sections.
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7.4.1 Detection in Noisy Environments

A noisy environment will be defined as the product set of a
set of well-defined stimulus patterns (including an empty field as a stimulus)
and a set of ""random noise patterns'' superimposed on the members of the
first set. The random noise patterns are generated by applying signals of
random polarity (positive or negative with .5 probability) to a randomly
selected set of S-units, chosen independently with probability £, . £ will

be called the noise density of the environment, and represents the expected

value of the proportion of S-points which emit random signals at any given

moment of time.

Note that a noisy environment is, in its entirety, a well defined
set of stimuli, with a probability .- associated with each stimulus
Such an environment consists of two classes: a positive class, in which one
of the ""positive stimuli" (e.g., a geometric form) is present in combination
with one of the noise patterns, and a negative class, consisting of the noise
patterns alone, or the ""empty field" stimulus with a noise pattern super-
imposed. The task of the perceptron is to distinguish between positive and
negative stimuli.

Let represent a test stimulus, selected from the positive

class. Then the probability of correctly identifying . as a positive
stimulus in a random sequence experiment, with S-controlled reinforce-

ment, is given by equation (7.7), with 7/ + defined by equation (7.9)

and -~ .,, defined by equation (7.11), just as in an ordinary discri-

Il
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mination experiment. Similary, if S, is a noise-stimulus, from the
negative class, the probability of obtaining the correct (negative) response
is given by the complement of the probability obtained from equation (7.7).

Some special analytic features of this problem are worth noting.

For a binomial model, with a large retina and large association
system (so that all () -functions and retinal intersections of noise patterns
can be assumed equal to their expected value) the intersection of a noise

pattern with any other stimulus will be equal to the expected value of this

sk

intersection. If we designate the noise patterns by 5,, 2, ...,

and positive stimuli by .. ' ,’.---. then (as explained on page 146),
"/II?’ N o "/f/ and
(RPTREE T L

Let _, and _, ' represent the same positive stimulus pattern with

different noise patterns superimposed. Then, if the noise density is

low, ., - S Bt s B . Therefore,
T I » which means that the perceptron can be taught quite
readily to give the proper positive response to a test stimulus, -,

Sj¢

Actually, as noise patterns have been defined, the intersection of a
pure noise pattern with a positive stimulus pattern will be slightly
less than the expected value, since some of the points which normally
are ''on' for the positive stimulus will be turned "off" for the noise
pattern. The conclusions above hold rigorously if the noise patterns
are sets of positive signals only.
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The same conclusion does not hold for the identification of a negative

(noise) stimulus, however. In this case, the generalization from a previously
7]
trained noise stimulus, b, to , isequalto (,- - @  (assuming

7!

all noise stimuli to be equal in area to their expected value). But the
generalization from a positive stimulus is = ,, = ', ,  which is generally
greater than !, , since the area covered by the positive stimulus with

noise superimposed is generally greater than the area of the noise stimulus

alone. Consequently, we would expect the positive response to tend to

generalize to the negative class as well, if both classes are represented

with equal frequency in the training sequence.

A slight modification of the perceptron should improve its
capability of distinguishing negative stimuli from positive ones. If the
R-unit is given a threshold greater than zero, it will tend to remain "off"
for the relatively weak signals coming from noise stimuli, but will go "on'"
(to its positive state) for the stronger signals coming from positive stimuli.
With this modification, however, the system is no longer an elementary
perceptron. An alternative procedure, which will improve the perfor mance
of an elementary perceptron, is to '"overtrain'' the negative stimuli,
composing a stimulus sequence in which negative stimuli occur more
frequently than positive ones. In an error correction experiment, it
should be noted, this bias will be introduced automatically, regardless of
the stimulus sequence, so that a detection problem should be solved much

more readily than with an S-controlled system.
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7.4.2 Detection in Organized Environments

In an "organized environment', where the background material
may closely resemble the stimulus pattern in its characteristics, detection
experiments take on some characteristics of special interest, psychologi-
cally. First of all, it should be noted that in attempting to distinguish a
pattern such as the letter ""X'" against a background of lines occurring in
random configurations, the environment may include stimuli which are
fundamentally ambiguous in cha:racter, since patterns closely resembling
the letter "X'", or even identical to it, might arise by a chance super-
imposition of straight lines. In such a case, the only reasonable test of
whether or not a pattern should be identified és an "X'" would seem to be
the human criterion of whether it looks more like an X or more like a
random assemblage of line segments. While a similar problem might
arise, in principle, in the case of detection experiments in noisy fields, it
1s less common there, except under extreme noise conditions. In the case
of organized fields, ambiguous organizations are more the rule of the day,
and the problem requires a different approach. In human perception, the
properties of ""good figure''are generally used to determine whether a
particular set of line segments is seen as a letter, or some other known
pattern, or simply as a random collection of unrelated components. Such
judgements are not possible, however, for elementary perceptrons. We

will return to the problem of figural organization in Part IV.
Treating the detection experiment simply as a special case of

a discrimination experiment, the same conclusions apply as in the case

of the noisy environment problem: it is possible, by exhaustively training
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the perceptron with the product set of positive stimuli and irrelevant
patterns to teach it to identify positive stimuli amidst extraneous material.
The learning is apt to be slow, however, and will generally fall considerably

short of what might be expected in a simpler discrimination experiment.

Most of the experimental work done to date on detection

experiments has been carried out with the Mark I perceptron using a gamma

system for the memory dynamics. This work will be reviewed in the follow-
ing chapter, which deals with  -perceptrons, but similar results might

be expected with alpha systems.

7.5 Generalization Experiments

In the preceding experiments, it has been required that _,
should necessarily occur as one of the stimuli in the training sequence.
When the perceptron is tested with a stimulus which has not been previously
seen, a weak form of generalization is possible with elementary -~ -systems.

Clearly, if the intersection of ”, with some other stimulus in the same class,

h

P

, which did occur in the training sequence, is large enough, -~ will

tend to evoke the same response as . - Inthis case, >  1is correctly
recognized only because, within the limits of tolerance of the perceptron,

it appears to be identical, rather than merely similar to, the previously

seen training stimulus. Thus, generalization, tor an elementary . -perceptron,
is based on an approximation to identity, rather than on similarity. Ina
''pure generalization' experiment, as defined in Chapter 3, the perceptron

would be asked to recognize a pattern in a position where it does not

overlap any previously seen patterns of the same class. If such an
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experiment is performed with an o/ -system, with a single class of

stimuli, the generalization will tend to be positive, due to the fact that Oij

is never zero, for most systems, regardless of the relative positions of

the stimuli. This result is trivial, however, and of no psychological interest,
sinceﬂ stimulus, whether it resembles the trained stimuli or not, will also
tend to evoke the same response. To prevent such a tribial result, it is
necessary to employ a discrimination test, training the system with two

kinds of stimuli, and then testing it with similar stimuli in a disjoint portion
of the retina to find out whether the appropriate responses have generalized
for both kinds of stimuli. In this case, if the stimuli are of equal area, and
equally trained, no generalization will be found, since the positive generali-
zation from one class is exactly balanced by the negative generalization

from the other class. Thus it is clear that an elementary o -system (and,
in fact, any elementary perceptron) is incapable of abstracting similarity

(in either the geometric or the psychological sense) but discriminates only

by measuring a function of the overlaps of a test stimulus with representatives

of both classes.

7.6  Summary of Capabilities of Elementary </ -perceptrons

The elementary o/ -perceptrons, being the simple#t class
of perceptrons, provide a baseline of performance against which other
systems can be compared. It has been demonstrated that the </ -system,
with both S-controlled and error correction reinforcement, is capable of
discrimination learning, provided it sees a large représentative sample of
the stimuli which it is required to discriminate. It does not generalize

well, to similar forms occurring in new positions in the retinal field, and
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its performance in detection experiments, where a familiar figure appears
against an untamiliar background, is apt to be weak. More sophisticated
psychological capabilities, which depend on the recognition of topological
properties of the stimulus field, or on abstract relations between the
components of a complex image, are lacking. The elementary perceptron
has no capability of recognizing time sequences, since its responses are
based on the momentary state of the system due to the current stimulus
pattern alone, and are not influenced by the preceding sequence of evénts.
Quantitative judgement might possibly be learned by an exhaustive training
procedure, in which the system is required to give one response for
stimuli above a certain area, or over a certain length, for example, and

an opposite response if they fall short of the criterion. This is a rather
crude approximation to quantitative estimation, however, and the problem
can be handled much more satisfactorily with perceptrons with linearly
responding R-units, as will be seen in Chapter 10. In R-controlled
experiments, where the perceptron is required to form its own classification
of stimuli, we have seen that the elementary ~ -perceptron tends either
to classify everything identically (its most general tendency) or else to
form a random dichotomy, which is of no psychological interest. It will

be found that most of the weaknesses of elementary  « -perceptrons are
true of all simple perceptrons, and that it is necessary to go to topologically
more complicated systems to find performances which are basically more
satisfactory. In special cases, however, other types of simple perceptrons

have advantages, as will be seen in the following chapters.
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7.7  Functionally Equivalent Systems

It may be disturbing to some biologically oriented readers to
think of an association unit that changes the sign of its output signal from
excitatory to inhibitory as a function of its training. This is a conceptual
simplification which makes analysis easier, but can be shown to be logically
equivalent to an alternative model in which particular neurons, or A-units,
are designated as excitatory, and others as inhibitory, with no change
permitted in the sign of their outputs. The alternative model (which is

analogous to the models originaily presented in Refs. 79 and 80) is as

follows:

Let the number of A-units be twice the number in the equivalent
- -perceptron. Let half of the A-units be designated as excitatory units,
and the other half be inhibitory units. All . are initially assumed to be
zero, or else to have positive signs if /- 1is excitatory, negative signs if
~ . is inhibitory. Each excitatory unit is paired with one of the inhibitory
units, and the same origin point configuration is assigned to both members
of the pair. Thus the responses of the inhibitory units exactly duplicate

the responses of the excitatory units. The reinforcement rule is that a

positive from the r.c.s. affects only the excitatory units, while a
negative - affects only the inhibitory units. With this rule, the signal
(- which goes to the R-unit in response to - is the sum of an

excitatory component and an inhibitory component, the total being exactly

equal to what it woulid be in the equivalent = -perceptron.
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The exact pairing of the excitatory and inhibitory units is, of
course, an inessential artifact, introduced only to guarantee that the two
types of systems are truly identical in performance. If the origin confi-
gurations of all units are selected independently of one another, the
expected values of the signals will be unaffected, but the variability will be
somewhat increased, due to the greater number of independent A-units
contributing to the signal. Such a system has been previously described as

a "'differentiated A-system' (Ref. 79).
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8. PERFORMANCE OF ELEMENTARY 7' -PERCEPTRONS IN
PSYCHOLOGICAL EXPERIMENTS

It will be recalled that the reinforcement rule for a gamma
system (défined in Chapter 4, Def. 38) is one which guarantees that the
sum total of the value of all connections to any unit remains constant, even
though the values of individual connections may change with time. In the
notation of the last chapter, the change in the value of the connection /.

due to the reinforcement of stimulus SJ- was given by

Lonr 2 . for an o/ -system. (8.1)

For a gamma system. the corresponding expression is

J

L4 / ._‘ *
G ) o I 5 S - . N /o
Norpp = Pllos N ‘—-l> A% )

L 2

(8.2)

A variation of the gamma system, which will be designated the (”/-System,

is of interest chiefly because it is considerably easier to analyze. For this

model,

(8.3)

This is equal to the expected value of /.o .. for the J'-system, and

with large values of //, the x-system and [’-system become indis -

tinguishable.
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The organization of thie chapter will follow closely that
of Chapter 7. The first section deals with the analysis of discrimination
experiments with S-controlled reinforcement, and presents results of a
number of experiments, including comparisons with the o/ -systems
considered in the last chapter. Discrimination experiments with error
correction, and discrimination experiments with R-controlled reinforce-
ment are then presented, and the final sections deal with detection

experiments, and other performances of /' -perceptrons.

8.1. Discrimination Experiments with S-controlled Reinforcement

8.1.1 Fixed Sequence Experiments: Analysis

As in the case of the alpha-system analysis, our object is to
compute the ratio yZ 7 WAL g ;, » for the class of perceptrons, test
stimulus, and training sequence under consideration. The notation and
definitions correspond to those employed in Chapter 7. The analysis again

follows that of Joseph (Ref. 41). For the " -system, the expected value

of ., is obtained as follows: The value of the connection from the A -unit

at the end of the training sequence 1s given by:

[ 0
N | N R I i €
vin  Tlam @l i) 20k
ol ' <

= ¥ A/VQ'/ = o) / K N
LﬁJ'pJ‘[—/-/A S Y Z—‘i(x’
o

2 d iy i
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Consequently, if the test stimulus 5, is now shown, the input to the

response unit will be

(8.4)

Fora " -system, the analysis is considerably simplified. In this case,

the value of the connection from unit - at the end of the training sequence

is

Collecting the signals from all active connections when 5  occurs yields

the input to the R -unit,
{ J

and the expected value of this signal is

t{_(Cl'I ' I‘NI‘/ ? b /{:‘/‘ ') ;T ..‘,' (';)), G

(8.5)
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The variance of «, is again computed from the general
equation (7.4), given in the last chapter. For a ' -system, the same
considerations apply as in the o< -system, namely, that the only source
of variability in the signals [;. (x) is due to the origin point configurations
of the A-units, which are selected independently for the different A-units.
Consequently, the equation (7.5) holds identically for a ,2/"—systern. In a
true 7 -system, however, the signals f,"r('/) are not independent. The
value 77, upon which C;; depends is the result of a series of increments,
AV, , each of which depends upon the particular set of A-units which are

active at the time of reinforcement (as shown in Equation 8.2). Consequently,

for a gamma system, the variance is
2 2 - - *
T, ) 2 N, [qr /x)] + Ny (No-1) cov. [ Cinlx)y £ ’1)}

. 2, Soe ! T . s
=) e NN 1) F el ) ol (x)
- Tl Er (r) (86)

The reader who is interested in the detailed analysis of this expression
will find a full algebraic expansion of its components in Ref. 41. The

final equation which results is as follows:

SNV I 3 ‘ f ' o o
S PP YL x/‘é'[”-"/‘)(/ Gis MG e ol )
7] N £
) ) ) ’ # l TR R ) ')'7
ey T ,(/// SN, s l Vo //-((‘é,r_ SRR A O (O Rt
[ L
1 Y 1'/"(, £
J
(8.7)
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An analogous treatment for the Z"—S}rstem, based on Equation (7.5) , yields

the expression:

> - SR r
.- ) A . o ey =30 Y = 90 e =000
; /o, I, 2 24 A0 P s li Lk {*/j ey ) 7(’)£ (QJ), Q/ L\),()
L

(8.8)

For both the ' -perceptron and the -perceptron, the expectation of w,

and the variance of .  are both on the order of /, . Consequently,

the ratio - can be made arbitrarily large by increasing N,

This means that the theorem stated in the last chapter (Page 159) holds for
and -perceptrons as well as for . -systems. Equation (7.7)

can again be used for a close approximation to the actual probability of

correct response for a ‘ or  -perceptron, substituting the appropriate

i

expressions for the mean and variance in each case.

It is interesting to note that if the expected values of the
generalization coefficients, +:-- , are substituted into equations (7.3),

(8.4), and (8.5), identical expressions are obtained for the expectation

of «~, forthe ~ , = , and 4 -systems. The expected value of
the un-normalized coefficient, .- , fora / -perceptrca is

Wy 100 =0 for a 7" -perceptron it is  / ( Ty T ;) while
for an -, -perceptronitis . . - . Substituting these quantities, we

obtain, for all three systems,

TS VIR (8.10)
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The special properties of the / and 7' -perceptrons are due to the
fact that their generalization coefficients for a binomial model tend to be
negative for sufficiently well separated, or disjoint, stimuli, whereas in
the case of an o< -system, the generalization coefficients are all non-
negative. In a Poisson model, while it is possible for negative generali-
zation coefficients to occur due to random variability of individual per-

ceptrons, the expected values of ;- are always non-negative, since

1 ‘
¢

Q7 only if the stimuli are disjoint. These features are of

interest for R-controlled experiments, as will be seen presently.

8.1.2 Fixed Sequence Experiments: Examples

Numerical analyses have been carried out mainly for the

J -perceptrons, since the equations are considerably simpler. For
1a.rge values of #, , the ’J"' and 7 -systems will have identical perform-
ances. Tables 3 and 4 (in Chapter 7) apply identically to the / -system,
for Experiments 1 and 2. The performance curves shown in Figures 13 and
14 are also applicable. Figure 2] shows a comparison of the 7 and R
systems on Experiment | (horizontal ;/s. vertical bar discrimination), for
the optimum parameters with a binomial model ( ~ =7,  /, & -2 ).
Figure 22 shows a similar comparison for the same parameters, with Experi-

ment 2.

It is clear that under the conditions of Experiments 1 and 2, the
/ -systems have no advantage ocver the ¢ -perceptrons. The equivalence
of the curves is due to the fact that in these experiments, all stimuli are
equal in area (yielding equal (/- for all stimuli), the number of stimuli in
each class is equal, and all stimuli occur with equal frequency. If the sizes
or frequencies are unequal, the /J -system may have a marked advantage,

as will be seen in the analysis of Experiment 4, in Section 8.1.4.
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8.1.3 Random Sequence Experiments: Analysis

The un-normalized generalization coefficients fora 7 and

7 '-system are given by

v

/
QI'J. n’.l/. - ‘N-'_? /’7; n./' fOI‘ a V/f‘ -SyStem (8'11)
gc; = ny - Q0 fora p -system (8.12)
where n; ;o= the number of A-units responding both to 5. andto S

As in the n¢ -system analysis (Section 7.1.4) the training
sequence is assumed to consist of 7 stimuli, where each stimulus, 5.
has a probability 7 of being selected at any step of the training sequence.
The analysis has been carried out only for the  -perceptron, since the
true 7' -system leads to excessively cumbersome expressions for the
variance. For large //, , as observed in the preceding section, the two

systems should be virtually indistinguishable in performance.

For the 7 '-system, the input to the response unit when Sx

occurs after the training sequence is

i, = 2 Dem-(n -~ (ion )
4 -y 7 4
J

where m; , as before, is the number of times that -, occurs in the
training sequence. Taking the expected value of this expression, we

obtain

/."(“7) r NL) > ':f/ ) (C)./')’ - ("J' ru)

—
J

(8.13)
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The variance of (., over both perceptrons and training sequences is

again given by equation (7.10). In the present case, this yields:

2
0/2((/—),) : TNQ. Z ,OJ' I:C)J'X—'ZOJ. QJ'/ * OJ?OX +(Na—/)((\?/'}'- O\/‘ Qx) :'

# TNaZ,Z/Oj/)é £ Py ‘V(T-/)(OJ',gx—OJ'O,gX‘Qg Qe * Q; Q4 Qx)
J ok

SITeN 100 =00y N Qg =04 Qy )J
(8.14)

The detailed derivation of this expression can be found in Ref. 41. It can
readily be seen that the theorem of Section 7.1..2 continues to hold for this

system. Actual performances can again be calculated by using Equation (7.7).

8.1.4 Random Sequence Experiments: Examples

A comparison of binomial -~ and ' -perceptrons on the
random sequence version of the horizontal/vertical bar experiment
{Experiment 3) is shown in Figure 23. A curve obtained from the simulation
of a true " -system with the same parameters is included for comparison.
The simulation curve shows the average of 100 runs. Figure 24 compares
the performance of the binomial model with that of a Poisson model, on the

same experiment.

In Figure 25, the performance of a 7' -system in the
"frequency bias' experiment (Experiment 4) is shown, with the mean
performance curve of the equivalent «o¢ -system, from Figure 14,

included for comparison. A comparison with Figure 16 shows that under

-203-




=6 S=A §=x 00€ = °N
VNIL3I¥ 0Z X OZ IVQI0¥0L NO S¥vg h Xx 0Z VI I1L¥3A SA SYVE 0Z X © TVLNOZIH¥OH

JININOIS
ONINIVYL 3HL J0 HL9N3T 3HL SA ¥vg 1S31 V 40 NOILVO I41UN3QI 103¥¥02 IHL 40 ALIT19vd0ud

(€ *LdX3) 30NIN0O3S ONINIVYL QIZ1WOGNVY NO SNOY¥Ld3O¥3Id-=.£ ONV 20 TVIWONIS 40 NOSIN¥VHWO) £Z 24nbi4

W 3ON3NO3S DKINIVYL 40 HLON3T
001 0l

I
1S S P S R S S 8 T P *
2666 = ILOLAWASY TVJILIYOIHL ;
N : : L i NOILVIWIS ‘SWILSAS - & —a : :
I ££66° = 3L0LdWASY 1T 3 T e i
Db b Tv0IL3¥03IHL ‘SWILSAS - 7 . RN I A :
P £L66° = 1L0LdWASY R
. IVOIL3¥O0IHL ‘SWILSAS - 2 o L W I
: e : e R PR Ea i

-204 -



'Il

x ‘00¢ = PN "3ONINOIS ONINIVYL 40 HLON3T ‘SA yvg 1S31 v
40 NOILVO1411IN3Q] hoummow‘uo ALIT18Y804d “(€ "1dX3) W3ILSAS- Z “3ONINO3IS ONINIVYL WOANVY

t=06 ‘s=4h ‘g=

()
nool

hg @4nb1y4
3ININO3S ININIVYL 40 HI9NIT

s

-205-

: R i :
LR N A AP Y PN L ST O S SR R




T=6 ‘1 =h ‘g=x
INIW1¥3dX3 SVI8 ADHINOIYL NI

(W3LSAS-> 404 9|

Y NOY1d3J¥3d- £ TVINONIG HLIM
ITNWILS 1S31 40 NOVLVJI411N3ql

914 3¥VdWOD)
‘001 =

(h "1dXx3)

(#) 1TOWILS ONINIVYEL 40

1334¥00 40 ALIN19vE80¥d GZ 94nb14

"ON
0001 001 0! |
— x 0
L. "r (. = i . 3 4 " = {°
. - - .m.... r . Fenme il (48
HE 2 1 L s o : . £
r.m.J_ “. R LI I Y S S . ?.
IINVHUOIHI4 JINVHD Y
il A 9°
.
g
(WILSAS~.£ ) JONVAHO443Id NVIW : m
i S~ RS o i R e S 6"
(ho" =& ) uVE TVINOZIHOH HLIM 1531 : :
u. . H B el e 7 o R - g - 2 e T A e t o

-206 -




conditions of unequal frequency for the two classes to be discriminated,
the 7' -system may have a marked advantage. The effect of frequency
bias on a 7 -system is also shown in a number of simulation experiments
with the IBM 704 computer, which have been described previously (Ref. 84).
The horizontal/vertical bar discrimination problem happens to show up the
7 -system to its best advantage, since, with a binomial perceptron, the
expected value of the generalization coefficient, ¢, , where 5; ard 5,
are in opposite classes, is zero for this particular problem. A Poisson
model, where the interaction between the horizontal and vertical bar classes
is non-zero, would not perform as well in this experiment, and the binomial

model would also perform less well in experiments with classes of stimuli

which could achieve greater intersections.

Figures 26, 27 and 28 show some typical experiments performed
with a digital simulation program, for binomial 7 -perceptrons of sizes up
to /&, © . , and a 72 by 72 retina. The stimuli are kept within the
retinal field in these experiments by requiring that their centers remain
within a 13 by 13 field, so that there are 169 possible positions for each
stimulus. In Figure 26(b), the effect of allowing rotations up to 30 degrees
and up to 359 degrees (inclusive), in addition to displacements within the
retinal field, is illustrated. Figure 28 shows the effect of size bias where
one class of stimuli (the letter "F') can be considered as subsets (on the
retina) of stimuli of the other class (the letter "E'). With purely excitatory
connections from the retina, the situation is clearly much worse than with

both excitatory and inhibitory connections, as shown in Figures 28(a) and (b).
From the equations for the expected value of the signal

(Equation 8.13, for example) it can be seen that a bias in the correct

direction may exist even when the perceptron is occasionally reinforced
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in the wrong direction. Several experiments have been carried out by

Hay using the Mark I perceptron at CAL, to study the effect of "random
errors' by the experimenter training the machine (Ref. 30). In an
experiment on the discrimination of the letters "E'" and "X'" witha '~
perceptron employing S-controlled learning, it was found that the perceptron
learned to discriminate the letters with 100% accuracy despite the introduction
of 30% misidentifications by the experimenter (i.e., by the r.c.s.). This
experiment emphasizes the fact that the perceptron can exceed the level

of performance of its "'teacher' or reinforcement control system.

8.2 Discrimination Experiments with Error-Corrective Reinforcement

While it has been demonstrated in Chapter 5 (Theorem 8) that

the error correction proc.edure will not always lead to a solution with the
7" system, practical systems seem to work about as well as  -systems,

and may actually learn somewhat faster in some cases. Figures 29 and 30
illustrate two sets of experiments on 1 -perceptrons, using the
Burroughs 220 computer at Cornell University, in which performance is
compared with perceptrons having the same topological organizations, but
employing an ¢ -system memory rule. Since the error correction
procedure will lead to a solution regardless of sequence or relative
frequency of stimuli in the classes being discriminated, and regardless
of relative sizes of stimuli, the special advantages of the 7' -system in
overcoming frequency bias and size bias are relatively unimportant here.
In most experiments with error-corrective reinforcement, therefore, the

simpler v -rule is generally employed.
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8.3  Discrimination Experiments with R-controlled Reinforcement

The performance of a ' -perceptron in R-controlled
experiments (where the r.c.s. is entirely isolated from the environment
and reinforces the perceptron positively at all times, regardless of what
its current response happens to be) is somewhat more interesting than that
of the ~~ -perceptron. Since it is possible to have negative generalization
coefficients for the 7' -model, two distinct possibilities suggest themselves
which were not present before: (1) The system may form an unstable
classification of the environment, with individual stimuli continually shifting
membership from one class to the other, due to negative interaction between
successive reinforcements; (2) the system may fo;'m a stable dichotomy with
some stimuli in the positive class and some in the negative class. The third
possibility corresponds to the expected situation with an =< -system,namely:
(3) The system may form a stable classification with every stimulus in the

same class, the alternative class being empty.

e

An unpublished theorem by H. Kesten proves that (for a 7 -
system in which the values are allowed to grow without bound) the first
alternative is impossible. Every perceptron will ultimately form a "stable"
classification, in which every stimulus is assigned to one of the two classes
and will remain in.the same class with probability | at any future time. The

remaining two alternatives both remain possible, however.

At the present time, a fully satisfactory analysis of the classi-
fication tendencies of 7 -perceptrons which are "left on their own' in an

R -controlled experiment is not available. A number of special cases can

s

Personal communication.
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be analyzed heuristically, however, and some of these are illuminating.
Moreover, a series of simulation experiments has been completed which

illustrates performance on some typical problems.

The basic feature of this system in an R-controlled experiment
is a tendency to classify stimuli on the basis of retinal location, rather than
geometrical similarity. If two stimuli occur in the same location on the
retina, covering largely the same set of sensory points, 9, will tend to
be positive, so that the reinforcement of one stimulus will tend to generalize
automatically to the other. A '"cluster" of such stimuli, projected onto a
limited region of the field, will tend to be classified the same way, either all

positive or all negative. On the other hand, two stimuli which cover disjoint

oI
psy

sensory sets will (in a binomial model) tend to have a negative g In

70

~

this case, reinforcing 5. with yy positive will automatically assign 5,
to the negative class, if its value was previously zero. Thus, clusters of
stimuli which arc "well separated' will tend to go into opposite classes, wiéh
a binomial " -perceptron. The following experiment illustrates this

tendency quite clearly:

EXPERIMENT 9: For the same retina and environment of horizontal and

vertical bars described in Experiment 1, let the stimuli occur in a random
sequence, as in Experiment 3. During the training sequence, R-controlled
reinforcement is employed. The response to each of the 4C bars is then

determined, to establish the classification which has been developed by the

perceptron.

In a Poisson model, the expectation of QL'J' for disjoint stimuli is zero,
in the 7 -system, and all stimuli will tend to go into the same class
unless they form completely disjoint clusters, in which case the class
assignment will be random for each cluster.
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In a number of repetitions of this experiment (which was
simulated with a 704 computer for a very large, or infinite A , binomial
perceptron, it was found in every case that the perceptron placed ten
adjacently located horizontal bars and ten adjacent vertical bars in the
positive class, and the other ten bars of each type in the negative class.
The dynamics of the process can be readily followed in a heuristic fashion.
The first bar to be seen -- say a vertical bar -- may evoke a positive or

negative response at random. If s = +/ , then the connections from the

vesponding A-units will each gain a positive increment of value, and connections

from inactive A-units will become slightly negative, so that the total value is
conserved. For two disjoint bars in the "same' class (i.e., both horizontal
or both vertical) ~-- will be negative, but for the two closest neighbors on
either side, ... will be positive. The generalization, ;oo to members
of the "opposite'' class (i.e., one horizontal and one vertical) will be zero,
since the intersection between any horizontal and vertical bar, in this
environment, is equal to its expected value, yielding zero generalization for
a binomial 7/ -system (see Page 146). Consequently, the horizontal and
vertical bars will never interact, regardless of the sequence in which they
occur, and each of these two sets of stimuli will organize independently.
Consider, therefore, the development of a classification for the vertical bars,
after the first has been associated to .+ - -/ . If the second vertical bar

in the training sequence should happen to be one of the two close neighbors

on either side of the original bar, this will immediately evoke the response
»"  +1, and will be reinforced in the same direction as the previous bar,
extending the net positive generalization to at least one additional member of
the vertical set. At the same time, vertical bars which are more than two
positions removed from both of the bars already seen will now have twice

the negative reinforcement that they received before, due to the summation
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of the negative 9;; - If one of these bars should occur, the response will
be -1 and ¥  will be negative. This will not only spread negative value to
the adjacent stimuli, but will add to the positive value of the stimuli which
were previously placed in the positive class. Thus two mutually supporting
"nuclei' of stimuli are formed, one in the positive class and one in the
negative class, which tend to spread their domain to neighboring stimuli,
but tend to ''repel' remote stimuli, supporting their adhesion to the opposite
class. Under these conditiohs, it is plausible that the most stable balance

between classes will be found when the classes are evenly divided, each

tending to attract marginal stimuli from the other to the same degree.

Simulation experiments with this procedure show that a stable
dichotomy tends to be formed after the first few hundred stimuli of the
training sequence, the probability of a change in class membership being
very small thereafter. The terminal condition is of the type indicated above,

with 10 horizontal and 10 vertical bars in each class of the dichotomy.

8.4  Detection Experiments

In detection experiments, the same general conclusions hold
true as in the case of . -systems (Section 7.4). In the case of noisy
environments with a large retina, it was noted that the intersection of a
noise pattern with any other stimulus will be equal to the expected value
of the intersection, i.e., to the product of the measures of the active
S-sets. For the binomial » -system, this implies zero generalization
from a reinforced '"positive' stimulus to a noise pattern, and zero
generalization from one noise pattern to another. This means that a

class of positive stimuli can be learned without any generalization to noise
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patterns, but that negative training on a limited sample of noise patterns
does not generalize c¢ffectively to new noise patterns. As in the case of
the | -system, the use of a threshold greater than zero on the R-units
should effectively separate positive stimuli from noise patterns. It is
worth noting that for discriminating a single class of positive stimuli

from noise, a monopolar reinforcement system (Defintion 35, Chapter 4)
will work as effectively as a bipolar system, since reinforcement given for
negative responses has little or no effect on future performance (except for

those noise patterns actually seen, or nearly identical to those seen).

Several experiments have been performed with the Mark I
perceptron at CAL to evaluate the performance of ) -perceptrons in noisy
environments, and in problems in which positive stimuli such as letters of
the alphabet have been mixed with extraneous, but similarly organized
stimuli (geometric patterns. other letters, etc.). Performance on the
discrimination of the letters "E'" and "X'" with various amounts of noise
present has been reported by Hay in Ref. 30. Two 240 A-unit perceptrons
were tested, both learning to perfection in the absence of noise. With noise
present, one perceptron learned as well as before, the second falling to
about 75% accuracy. The amount of noisc introduced was not carefully
quantified in these experiments. but it is clear that the perceptron can
perform appreciably better than chance as long as a human observer can
still detect the original letters embedded in the image In the experiments
with superimposed images of irrelevant patterns, a poorer level of
performance is obtained. A perceptron trained to respond positively to
the letter X, with monopolar 4 -reinforcement, will generally give the

roper responsc whenever an "X" is present, but tends to give the
prop p p
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positive response quite frequently to triangles, squares, or other letters as
well. The introduction of a high response threshold improves performance
considerably, but a system capable of responding in terms of figure-ground
organization would clearly have a great advantage in such experiments. As
the quantity of background material is increased, the performance of an

elementary perceptron in detection experiments deteriorates rapidly.

A striking difference between an elementary perceptron and a
human observer in detection experiments is that the human will show vast
differences in performance depending upon organizational properties of the
background and its relationship to the figure. For example, the human
observer will readily recognize the letter "E" in Figure (a), but will find
it hard to segregate the "E' {rom the extraneous lines in Figure (b). An
elementary perceptron would show little or no difference between these two

situations.

(b)

Typical test patterns for detection experiments
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8.5  Generalization and Other Capabilities

In "pure' generalization experiments, where the test stimuli

are disjoint from the training stimuli, the ' -system has no advantages
over the . -system. In fact, the binomial . -system, due to its
negative .-  for disjoint stimuli, will actually tend to place a disjoint

stimulus in the opposite class from the reinforced stimulus, unless members

of the opposite class have also been reinforced, in which case the effects tend

to cancel.

Where the training stimuli cover the retina in a representative
sample of locations, the gamma system has the possible advantage of low
or negative generalization to patterns which have small intersections with
the trained patterns. This shows best in such experiments as the horizontal/
vertical bar discrimination experiment, where generalization from horizontal
to vertical bars is zero. As was noted in the case of R-controlled discrimina-
tion experiments, gencralization in 7 -systems, as with all elementary
perceptrons, tends to be based on the location rather than the similarity of
the stimuli, in any more fundamental sense. Ideally, we would hope to find
a system in which 7. is large for all pairs of stimuli, $: and 5, » which
are "similar' or "eciuivalent“ under some group of spatial transformations,
such as rigid motions, dilatations, or projective transformations, and small
or negative otherwise. Except in exceptional and highly restrictive
environmental conditions, this condition 1s not to be found in elementary
perceptrons. Highly artifactual organizations which have the required

property can be designed in the case of four-laycr series coupled perceptrons,
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as will be seen in Chapter 15. Systems which spontaneously acquire the
required organizational properties are found chiefly among the cross-

coupled perceptrons, however, and will be discussed in Part III of this

volume.

In general, it is seen that 7 -perceptrons have much the same
properties as . -systems. In S-controlled experiments, especially with
frequency and size bias present, they perform somewhat better, but in
error correction experiments there is little to be gained from the gamma
rule, and there is the possibility that the '-system may fail to work where
an v -system would have succeeded, as proven in Chapter 5. The
performance in R-controlled experiments is somewhat more interesting
than that of ~v -systems, but the classifications which are formed spon-
taneously tend to form on a basis of classification related to position of
stimuli on the retina, rather than similarity, and are consequently of

minimum psychological interest.

The 4" -system may be somewhat more plausible as a biological
memory mechanism, due to its fundamental conservative property. If
biological memory is due to a physical process which maintains some over-
all equilibrium, such as a chemical substance the total amount of which
remains invariant, or a competition among afferent processes for '""Lebensraum'
in the neighborhood of an efferent neuron, this property would certainly be
indicated. It should be emphasized, however, that the conservation of the
total value, as in the systems considered in this chapter, is insufficient to
keep individual coupling coefficients, Vs from becoming indefinitely
great, since they may be balanced by negative values of equal magnitude,
Such a condition is quite implausible in any real physical system. In the
next chapter, elementary perceptrons with memory dynamics which limit

the growth of the values are considered.

-220-




9. ELEMENTARY PERCEPTRONS WITH LIMITED VALUES

Two basically different mechanisms for limiting the growth of
values, v - , will be considered in this chapter. The first mechanism
is a simple upper and lower bound, such that the value'may grow up to the
designated limit but no further. Systems employing this mechanism show

""'saturation properties'' as the connections attain their limits. The second

mechanism is an exponential decay, which determines an equilibrium point
for each 7.  depending upon the frequency with which it is reinforced.

If the decay rate is very small, such systems tend to approach a terminal
state resembling the performance characteristics of a perceptron with un-
limited values after a long training sequence. Systems with strictly bounded

values will be considered first.

9.1 Analysis of Systems with Bounded Values

Two types of analysis have been carried out for systems
having upper and lower bounds for r. . The first deals with the
terminal distribution of the values after a long period of exposure to a
random sequence of stimuli, with S-controlled reinforcement. The second
deals with the actual performance of a bounded-value perceptron. Ia both

cases, we will follow the method of analysis originally employed by

5
%

Joseph, in connection with bounded < _perceptrons (Ref. 41) . All of

these analytic results apply to experimental systen{s using S-controlled

reinforcement procedures.

Bounded  ~-systems have been called A -systems in Ref. 41.
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9.1.1 Terminal Value Distribution in a Bounded o¢-system

Suppose an « -perceptron has upper and lower limits L and 4
for the values <, . Suppose a particular connection, ;. , receives
a reinforcement of +1 with probability » , -1 with probability Q and 0
with probability /- p- ¢. If all stimuli are equiprobable, and the
perceptron is trained by an S-controlled procedure, this would correspond
"to a connection from an A -unit with bias ratio £/ 9 (see Definition, Page 77).
It is assumed in the following analysis that the reinforcements occurring at
different times are statistically independent. For convenience, L and ¢
are taken to be integers. Then the value, /7, , may assume any one of
L-Z + /[ distinct states ( ¢ , €+/, ..., L ). Clearly, if unit o,
responds more often to stimuli of the positive class than to stimuli of the
negative class, 2, will tend to grow in a positive direction. Eventually
it will arrive at the limit . . At this point, a run of ''negative' stimuli
may bring it down again, but it can never exceed L . If the unit has a
negative bias, v/ . will similarly tend to remain in the neighborhood of
the lower limit, £ . The problem is to find the terminal probability
distribution (if one exists) for the value ¢, , as the duration 7 of the

training sequence goes to infinity.

In the following analysis, it will fir i be assumed that a stable

terminal probability distribution for 7., exists, which will not be
altered by the addition of more stimuli to the training sequence. On the
basis of this assumption, an equation for the distribution can be found. It
will then be proven by induction that the proposed distribution is, in fact,

a stable probability distribution.
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Let /T(x) - probability that 2. = » , in the terminal
probability distribution. Let 77(Z) =.¢ . This will be equal to the
probability of 2--,. arriving at # from above, plus the probability that

¢, remains in state ¢ if it is already there. Thus,
ml) =« = g [77‘(/.’) FIT(L+ 1)+ (1-p-q)IT(L)

Hence

)/;741)'/. l["A
Cewr, o PRI (9.1)
) 7
14 "

For any integer 2 < ¢ <« ( - & .

T0b e -1 (Z/"/'(é’+/')r /;77('/+,'-2)+(//—/)—:;/'/’7_({/'/-[-//'

Hence,

7 (-‘f,'f.l") = =g =M, g0 "‘_V"-f n )

./'t",/_ S I i
(9.2)

Thus, all values of /7/r) can be computed if the probability .c of + .
being at the lower limit is known. Since the sum of // for all possible

values of 2. must be 1, the value of « can be obtained from the

equation:

o (9.3)
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For the distribution to be stable, it is sufficient that the proba-

bility of 77,. being at its upper limit satisfies the equation. |

I 70”“ -1) + ('/—Q)/’T(/.)
(9.4)
By induction on ~ , it will be shown that
iTidrd) - l/"[/r' [ 1'-/)] + (/‘7/77(/1‘1)
o (9.5)
= £ Tl i-1)
/
for ! €0 « (-0 . (9.4) is only a special case of (9.5).
To begin with, for /- / , we have 77(/7)= » andfrom (9.1),
TI£4e 1) = ’CG”: . This clearly agrees with (9.5). Now assume (9.5) is
true for o= o 1< < L -/-/1 . Thatis
) /‘J/\ ’/"’/ﬂ.tv /,\
But by (9.2), letting . ¢!  we then obtain
: 4 f " 7 . \
T(é+r+1 /——f—i r//(f+r—/)J—’—pr(.:._«r'—//
% 2 4 A
/
A o
’/
Thus, having assumed (9.5) to be true for / /~ , we find that it is
also true for 1+ [ ; consequently it is true for all , , and (9.5)

must be true. From (9.5) it is also clear that the quantities 77 will
all be non-negative, so that the function 7//x) meets the requirements for

a probability distribution.
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Equation {9.5) can be used to compute /7(r¥) by assuming an
arbitrary value for .« ,and then normalizing the distribution as in (9.3).
The equation can be simplified by taking the lower limit, # , equal to

zero, and setting ¢ =/ for the unnormalized distribution. Then
%

T(x) ={( ’10 prior to normalization. For the normalized distri-
o . o ol P
= vy P G- p o (-:-—-')
: . £ N S . 4 o
bution, ¢ *]Z /,4. ; = IO FE Le 7 ,_,'.//‘;-An/
voamzg f - ) 7

This completes the proof of the following theorem:

THEOREM: In a bounded  -perceptron, with S-controlled reinforce-
ment, the probability distirubtion /77 v/ (for the value of

a particular connection) approaches a stable terminal

ZWis v =4

distribution of the form 77(-' = I_‘(T/i where «
: s
is a normalization constant equal to — ,-U"/L?T';T

7
A

Figure 31 shows the probability distribution for .. for
several values of f and for 40 increments between the upper and lower
limits. (The distributions are symmetric for equivalent values of Z )

with upper and lower limits reversed.) Note that with even a slight bias

f )there is a very low probability that ~--. will have a sign
opposite to the bias. For .+, for example (and taking < = -20
7 # .0 . as in the figure) the probability of a positive 7. in the

terminal distribution is only .0097. If the range were half as great (20
increments instcad of 40) the probability of positive 2. for the same

conditions would be increased to .2295.
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()

Figure 31 TERMINAL PROBABILITY DISTRIBUTION OF 2~ ,. IN BOUNDED oc-SYSTEM
£ =-20, L=+20
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The frequency of possible ratios % for A -units responding
to horizontal and vertical bars can be determined from Table 1. From this,
it is clear that the majority of units have a pronounced bias towards one
class or the other, so that one might expect fo find the majority of active
connections having values in the neighborhood of the appropriate limit, L
or ¢ . This heuristic argument supports the conjecture that the bounded
system should still be capable of learning discrimination tasks in S-controlled
experiments, even though the system tends to ''saturate'’, with all values in
the neighborhood of the upper or lower limit. The quantitative performance

of such systems will be taken up in Section 9.1.3.

9.1.2 Terminal Value Distribution in Bounded 7 -systems

In a bounded " -perceptron, the analysis of the terminal
distribution for -.:. is complicated by two considerations. First, there
are at least four possible values of /<, namely /-0, , -/ 4+ ,
- % ,and + .-, each with its own probability. If - is not equal for
all stimuli, the number of possible values for .. '~ is increased in
proportion to the number of different values for (*; . The second
consideration is that the conservation rule, which requires the sum of all
values to remain constant, makes the admissible increment for one
connection dependent on how many of the other connections are currently
free to move. For example, if all of the "active" connections have values

equal to [/ , the expected decrement, — .- , for the inactive connections
q P ;

due to the application of a positive /.- cannot occur.
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Due to these complications, an analysis for a true /' -system
has never been carried out. An analysis has been completed by Joseph
for a _/7'l—system with monopolar reinforcement (i.e., reinforcement
is applied only for stimuli of the positive class, and 7 = 2 for stimuli
of the negative class). In this case there are only two non-zero changes
which might occur, -, for active connections and - for inactive
connections, and the reinforcement of a given connection does not depend
on the state of any other parallel connections, as it does in the ; -system.
The analysis is a somewhat more complicated form of that presented in the
preceding section (due to the inequality of positive and negative changes in

; Since the equations are of limited interest aside from the specific

W )'
model considered, they will not be repeated here, but they can be found,

together with typical distribution curves, in Ref. 41.

9.1.3 Performance of Bounded « -systems in S-controlled Experiments

From the preceding analysis, it is clear that with a large
number of increments between the upper and lower limits of -, , the
value will ultimately tend to remain in the neighborhood of the upper or
lower bound, depending upon the bias ratio of «¢- . In the following
analysis, the problem is simplified by assuming that the limits are
actually trapping, so that once a connection has arrived at value [ or

/ , it remains there permanently, regardless of future reinforcement.

t
)

Consider a basic training sequence of m» stimuli, Sy
which is then repeated a sufficient number of times to '"saturate'' the
system, i.e., to drive all biased values to their limits. If the value of a
connection is <= after the first » stimuli, then after r repetitions

of the training sequence, the value will be
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min (L, o) if 24 >0
min (4, rv)  if 27 <0

") if 20 =7

for a bounded ~v-system. An unbounded < -system will have the same
performance after ~ repetitions of the training sequence as after a single
repetition. The following analysis compares the performance of the
"'saturated'' bounded . -system with that of the unbounded /.7 -system
at the end of the training sequence. The analysis will be accurate for the
assumption of a large range between ¢ and / , so that after the first »

stimuli none of the values have reached their limiis.

Let =~  Dbe the probability that 4 = +/ for test stimulus S, ,
for the unbounded /v -system, and f-‘l' be the corresponding probability
for the bounded . -system. Then the conditiunal probability r"'//‘l'.! L )

gives the performance of the bounded system as a function of the performance

of the unbounded system (which is known from Chapter 7).

3

Suppose /., A-units are activated by the test stimulus, 5,
Then for the unbounded system, (/| ’/,;// = gar,;g ) where (_5 is the cumulative

distribution function defined by equation (7.7) and

Ny Elol)
where /(4 -, ) = expected value of a connection activated by S, , and
() standard deviation of such a connection. The bounded « -system,
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on the other hand, will give response +1 if the proportion of the Na*

active connections having value [ is greater than - Z/(L -2). If

¢/ = - , then this reduces to a requirement that the number of active
connections having value [ should be greater than the number having value Z .

The connections having value 0 may be ignored. As with the unbounded

system, it is assumed that after the first » stimuli, @, 1is normally

: ] . ; g 2 q
distributed with expected value £ (%7, and variance o "(27,,.) . This
assumption is reasonable if the range of 2, , (L-/) is greater than 2m
and m 1is fairly large. If the range of <+ . 1is less than Zm» , the analysis

can be considered only an approximation, which becomes increasingly poor

as the range diminishes.

Under these conditions, in the bounded system, the probahility

that the terminal value of a connection is . is equal to the probability that
77, 1s positive after the first m stimuli. This is equal to ¢ ()’/T/; )

Since :j" 1s a cumulative probability distribution it is a one-to-one function
from its domain to its range, and is therefore invertible. Thus, given £,
and NU’ , the probability #,  that a connection activated by 5/( goes to

value L will be;

L f 2 ‘.'L (=0
(p[_ Py N, ‘ f F e S (9.6)
1y, 7
and this yields
N,y ) )
‘|- , e ‘N, } ’ N'7 _l/

(/’/,’ﬁ': ] Z S, [1-p )

oy-r (9.7)
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¥ 1
Ny | ¢
where 7 = l}zi—:-p :—} , the notation [~] indicating the least integer
greater than or equal to n . To obtain (Px’ | P, ) , the expectation of

(9.7) with respect to N,_; is required. For reasonably large values of /V, ,
(BIL )~ (P E,,FIN)) . Substituting @, N, for F(N,) this

finally yields:

/ ’ = }1 //-:, Na) g ///_D g NCL ‘j
s | d A L '
g0 (9.8)
: e €, N, |7
where P ¢ '-—‘:_—tf—;) , [ 2 Ny 2]
L R | L+ 2]

In Figure 32, the conditional probability of error in a bounded
~ -perceptron is shown as a function of the error probability (/- P,)
for the unbounded system, for several values of N,L; . —Z—l—éllz I

taken to be 1/2. Curves of this function for cases where upper and lower

s

limits are not symmetric can be found in Joseph, Ref. 41 (Figures 10-14 )

9.1.4 Performance of Bounded ' -systems in S-controlled Experiments

The analysis in the preceding section, and the curves shown

in Fig. 32, can be applied without modification to bounded 7 '-perceptrons.
The true 7 -system, however, may perform somewhat better than the
7 -system, since not all values can '"saturate' independently. If more
than half of the connections have a positive bias, for example, not all of

the positively biased connections can go to the limit [ , since this would

s

It is assumed here that { -~ 0, £ < U,
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require that the remaining connections take on values less than ¢ ,
in order to satisfy the conservation rule. In the 7 -system, thereforel,
we would expect a greater number of connections to remain at inter-
mediate values, rather than going to the limits, and this should result in

a '"compromise'' between the performance of an unbounded and a bounded

value system. An exact analysis of the  7'-system has not been carried out.

9.2 Analysis of Systems with Decaying Values

The bounded value systems have two disadvantages relative to
the "ideal" unbounded systems. First, they permit a smaller number of
memory states, and second, in S-controlled experiments they tend to
arrive at a saturation condition in which their performance is actually
poorer than that obtained during the transient learning phase; that is,
their performance curve first increases to a maximum, and then declines
to a terminal asymptote as the system saturates. The first disadvantage is
not serious, if the range of 7~ . is reasonably large. The second may be
more critical, since it means that units with a low '"utility" for a given
discrimination are pulling as much weight in the saturated system as units
with high utility (as measured by their bias ratios). In the cross-coupled
perceptrons considered in Part III, this latter consideration is more

salient than in elementary perceptrons.

An alternative value-limiting mechanism, which is also of
interest due to its apparent biological plausibility, is obtained by allowing
the values to decay exponentially towards a resting state (generally taken

to be zero). This mechanism is relatively free from the difficulties
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encountered in the bounded value system. In this model, +7, will

continue to grow in the direction determined by the bias ratio of a; , until
the expected rate of reinforcement is exactly balanced by the rate of decay.

At this point a dynamic equilibrium will occur, with ¢-., tending to fluctuate
about the equilibrium level. This means that connections which are frequently
reinforced, in a consistent direction, will attain higher values, in the limit,

than infrequently reinforced connections, or connections with low bias.

Consider an =~ -system with decaying values. Let the decay
rate be equal to 7 'd<< /) . Let the probabilities of positive and negative
increments to »;,. be p and 7 , as in the analysis of bounded ~¢ -systems.
As long as  is small, v, will tend to approach an expected asymptotic
value equal to "~ -4 ¢ . At this point, the expected rate of gain, per unit
time, is p-47 , and the expected rate of loss is d'uv-, - P If the value
of J is very small, and the relaxation time correspondingly long relative to
the expected recurrence rate of stimuli from the environment, this system
should approach as a limit the same performance as the unbounded -
system, where -~ . tends to grow in proportionto p-¢ . If J is some-
what larger, however, we find that the most recent stimuli in the training
sequence will have the most pronounced effect, progressivély earlier stimuli
exerting a progressively dimishing effect due to the decay of <2 ,. . Sucha

perceptron tends to forget its remote experience in favor of more recent

experience,

The dependence of these systems on the sequence as well as
the identity of training stimuli makes them difficult to analyze when the

relaxation time, or '"“half-life' of 7, 1s on the same order as, or
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shorter than, the training sequence. If ¢ is sufficiently small, per-

formance can be assumed identical to the unbounded system. An absolute
bound on the maximum attainable magnitude of v, for a decaying value
perceptron will be /¢ , corresponding to a situation in which «¢;,. is

reinforced continuously in the same direction.

9.3 Experiments with Decaying Value Perceptrons

9.3.1 S-controlled Discrimination Experiments

The assential features of S-controlled discrimination experi-
ments with decaying value perceptrons have already been noted in the
preceding section. If the decay rate is small, the decaying value system
approaches the performance of the corresponding 'ideal' or unbounded
system. If the decay rate is relatively large, forgetting occurs, which is
greatest for temporally remote events and negligible for recent events in

the training sequence.

9.3.2 Error-correction Experiments

In discrimination experiments with error corrective rein-
forcement, a more complicated situation exists than in the case of S-
.controlled experiments. In the error correction system, once the
perceptron has learned a task, reinforcement ceases, and the values
of a decaying system would be expected to decay back towards zero.

In a perfectly noise-free system, the values would all decay in proportion
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to their magnitudes, however, and consequently their ratios would never
change as long as no further reinforcement was applied. Thus once per-

fect performance is achieved, it will not be lost as long as the values

remain above the noise-level of the system, despite the decay effect.

This also means that if a ""run" of correct responses occurs during

training, the ratios of 7, for different connections will be unaltered, so that
the next error to occur will be no different in the decaying value model than
in the unbounded model. Consequently, the application of reinforcement just
sufficient to correct this error will bring the ratios of the values to precisely
the state that they would have in the unbounded model, and ability to achieve

a solution to a classification problem should be unaffected, in principle.. In
actuality, however, the continuously decaying values clearly present a
problem, since any physical system will ultimately forget, when the values

become small enough to be undetectable.

A variation of the decaying value model is capable of eliminating
the problem caused by the diminution of the values in an unreinforced system.

If - is held constant so long'as no reinforcement signal is received

/o
from the reinforcement control system, but decays exponentially in the
presence of such a signal, the learning ability of the perceptron will still be
unaltered (by the same argument as above), and no change will occur once the

task has been properly learned. This means that the increment to the value

of v attime / will be

Bore(t) — |al(t)=dar., (£)] 7 it)
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where ) (t) maybe +¢ , -¢ , or0.

It should be noted that in the error-correction procedure, the
loss of temporally remote experience with large values of ¢ does not
occur, in an ideally functioning (noise-free) system. Unlike the S-controlled
system, where the magnitude of new reinforcements remains unchanged as
the values decay, the error correction procedure will require smaller or
less frequent increments in order to correct an error, and earlier experience
tends to be retained about as well as in the unbounded, or non-decaying

system: A loss of early experience does occur, in such systems, but it is

due to "writing over' earlier memory traces with more recent reinforcement,
rather than to a passive decay, as in the case of the S-controlled system.
This observation would seem to indicate a closer correspondence of the
error-corrective system with what is known of forgetting in biological

systems.

The mean performance curves for eight simulated perceptrons
with ¢ * , o . 1 ,and d = .0/ are shown in Fig. 33. Note that
for these actual systems, there is a progressive deterioration of performance

as the decay rate is increased.
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9.3.3 R-controlled Experiments

The most interesting experimental results obtained fto date

with decaying value perceptrons deal with the performance of decaying

7 -systems in R-controlled experiments. Experiment 9 has been
studied most extensively, by means of simulation experiments repre-
senting a very large, or infinite A, , perceptron. Unlike the previous
experiments (discussed in Section 8.3) monopolar reinforcement was
employed, i.e., the perceptron was reinforced positively for r £y )
and was not reinforced at all for ' - -/ . The system was further
modified by assuming a slight negative quantity to be added to Awv-,. (¢)
for all /[ ; that is, an invariant negative reinforcement component was
added uniformly to all connections,regardless of what stimulus occurred,
and regardless of the activity state of the connection. In the absence of
any other components, this would cause a progressive downward drift of
all 7--,. until they achieved an equilibrium with the decay rate. It was
assumed that this negative component was sufficient to add a quantity
equal to -0.0001 to the set of connections activated by a single stimulus.
Thus, apart from the decay. the change in values for each reinforcement

could be expressed by the equation:

The effect of the fixed negative component in these experiments
1s to create a negative generalization from the first stimulus to occur
(say a horizontal bar) to all members of the opposite class (vertical bars)

in place of the zero generalization which would otherwise occur with a

-239-




7' -system. The result is that after having seen a single stimulus

which activates a positive response, all members of the opposite class
are thenceforth permanently classified in the negative class, as no
further events can occur which will make one of them positive. If the
initial stimulus is a horizontal bar, then, with monopolar reinforcement,
no vertical bar will be reinforced, since all vertical bars evoke a -1
response. The next stimulus which can possibly be reinforced is, in fact,
another horizontal bar which happens to be close enough to the previous
one to have received positive generalization from the first reinforcement,
i.e., the first or second neighbor on either side. The result is a gradual
growtlfl of the positive stimulus set, by accretion of near neighbors which
have received positive generalization from those bars already classified
as ''positive'. Thus, having started out by randomly placing a horizontal
bar in the positive class, the system has no choice but to include only

horizontal bars in the positive class, and, with sufficient time, all

horizontal bars are so classified.

While this phenomenon occurs even if the decay rate is zero,
it is markedly accelerated by a non-zero decay rate. With ¢  , the
perceptron shows a high degree of "rigidity'" in its early classification, in
which some horizontal bars are positive, and the remainder still negative
(as in Section 8.3). This is due to the continually increasing magnitude of
the negative values evoked by the "incorrectly' classified stimuli, which
must be overcome in order to change their classification. Thus, as time
progresses, it becomes harder and harder to switch each additional hori-

zontal bar into the positive class, since an increasingly large number of
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""marginal' positive stimuli must be reinforced in order to obtain the
required amount of positive generalization. Moreover, as the positive
class expands, the stimuli which are centrally located within the "'positive
band' all contribute further negative generalization to the remaining
stimulj, rather than helping to make them positive. These combined effects
lead to a convex, negatively accelerating learning curve, as illustrated in
Figure 33. The addition of a non-zero decay rate limits the negative value
which must be overcome in order to change the classification of an

"incorrect' stimulus, and thus makes the system more flexible.

If the decay rate is increased progressively, it is found that
there is an optimum at about 4  0.01. If the decay rate is increased
further, instability occurs, due to the loss of stimuli which were previously
classified correctly, but whose positive values have decayed to such an
extent as to be overcome by negative generalization from other stimuli.
These effects are shown both in the learning curves of Fig. 34(a) and in
Fig. 34(b), which shows the expected learning time to perfect performance
(i.e., perfect dichotomization of horizontal and vertical bars), obtained

from a sample of 10 runs.

It might seem, from these results,that perceptrons organized
in the manner indicated could be expected to form "meaningful" classi-
fications of stimuli, on some basis other than retinal position. Unfortu-
nately, the results, while illuminating, are highly restricted in generality.
The proposed dynamics are too contrived to be biologically plausible, and

it is found that in any environment in which classes of stimuli to be
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differentiated permit positive generalization between members of different
classes (a much more usual situation) the mechanism which yields good
separation in the above example breaks down. If 9;; between a single
horizontal bar and any of the vertical bars were positive, for example,
the spread of generalization would not stop with the members of the
horizontal class, in the above case, but would invade the opposite class

as well. If, instead of 4 by 20 horzontal and vertical bars, the perceptron
is confronted with an environment consisting of the twenty horizontal bars
and a set of twenty pairs of parallel 2 by 20 horizontal bars, separated by
a space of 3 units on the retina, the perceptron will not spontaneously learn
to distinguish single bars from double bars (although this task presents no

difficulty in an S-controlled experiment).

Another shortcoming of the spontaneous organization phenomenon
which has been demonstrated here is the basically unbiological character of
the learning curves. It has already been noted that'these curves are convex,
or decelerating. A human subject, or even an animal subject, confronted
with the problem of distinguishing horizontal {rom vertical bars might make
many mistakes initially, but would soon accelerate his learning as he began
to generalize to new stimuli. If he had a hundred bars, in different retinal
positions, to classify, the hundredth bar would certainly not present the
almost insurmountable obstacle that it represents for the elementary per-
ceptron. Thus it is clear that the most sophisticated generalization phe-
nomena which have yet been found in elementary perceptrons are still far
short of what one should expect from an adequate brain model, if bic;logical
standards are employed. This problem will be re-examined at greater
length in Part III, where it will be seen that multi-layer and cross-coupled
perceptrons perform such tasks in a much more suitable fashion than those

systems which have been considered thus far.
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This completes the presentation of elementary perceptrohs. In
the following chapters, some other types of minimal (S-A-R) perceptrons
will be considered, but it will be seen that none of these have capabilities
for generalization appreciably beyond those discovered in the elementary

systems.
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10. SIMPLE PERCEPTRONS WITH NON-SIMPLE A AND R-UNITS

In Chapter 4, a simple perceptron was defined as one which

satisfies the following five conditions:

1. There is a single R-unit, with a connection from every A -unit.
2. The perceptron is series coupled, with an S-A-R topology.

3. The values of all S-A connections are invariant.
4. Transmission times of all connections are equal ( 7" generally

taken as 0).

5. All signals generated by S, A, and R-units are functions of

the algebraic sum of input signals arriving simultaneously

at the unit.

In the preceding chapters, we have considered elementary

perceptrons, which are characterized by the additional constraints that all

A and R-units are "simple' units, and that the transmission function of the
connection < takes the form: /:;J (t) - a;(t o ) vy (t) . A
simple A-unit is a signal generating unit which emits an output signal
a; = +/ if the algebraic sum of the input signals, o, , is equal

or greater than the threshold &# , and @ otherwise. A simple R-unit
emits a +1 signal if the sum of its input signals is strictly positive, and -1
if the sum of its inputs is strictly negative. In this chapter, we shall
consider the properties of simple perceptrons in which these contraints

are dropped. This will include a brief consideration of linear networks
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in which all signals are transmitted in proportion to their value; the
properties of perceptrons with linear R-units but non-linear A-units will
then be considered, and finally the question of optimum transmission func-
tions will be discussed. In later chapters, the remaining constraints of
simple perceptrons will be modified, and a number of non-simple systems

will be analyzed.

10.1 Completely Linear Perceptrons

A completely linear perceptron is one in which all signal functions

and transmission functions are linear, i.e., the output of unit «~ . is of the

L2 . 3 s
form «, = <, o; , and the signal transmitted by a connection <oy s

. € ¥ Q . . .
of the form ¢-- ° w- 2.+ . We will consider linear perceptrons in

5 Iy
environments such that the inputs to an S-unit are either 1 or 0 (so that the
conclusions apply equally well to perceptrons which are linear everywhere
except in the S-units). By analogy to Section 5.4, we define the bias ratio

of an S-unitas »* ~»~, where ~» 7% is the number of positive stimuli, and

n~ the number or negative stimuli which activate the S-unit. For such

systems, the following theorem holds:

THEOREM 1: Given a completely linear perceptron, a stimulus world,

W , and a classification (W)such that the bias ratio of

every S-unit is equal (and non-zero), no solution to (W)

can exist.
PROOF: Let »° index of any stimulus in positive class (5£+).
47 = index of any stimulus in negative class { $;-) .
. th .
4 - index of 4  sensory unit
x . : th :
s,; (#) = signal transmitted from the 4  sensory unit

.th - .
to the ¢ A-unit in response to stimulus §y
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When stimulus $5; occurs, unit . transmits a signal equal

to oc;(4)v;, tothe R-unit, where

e (8) = ) ok ()

The total signal, «g , received by the R-unit from 5{ is therefore:

wy = Z,”;(*@) e ZZ,C/I, (8) v;p

Since every signal g must agree in sign with the classification of Sy

for a solution to exist, we require that the following inequalities be satisfied:
- , + .
Zz Z/ Z{ CA[ (/é ) Uy >0
o a (10.1)

D 1) L6 <0 (10.2)
‘ <l A7

But it has been stipulated that the bias ratio of each S-point is equal to a

constant, + > 0 . This means that, for any / and 4 ,

Z/ [‘A‘t. (&+/ - I‘; C/:t' /’g-) (f' = 0)
£t -

or,summing over S-units,
20 i (#7) = r ) el (£7) e
4 AT 4 BT
Substituting in the expressions (10.1) and (10.2) we get the contradiction

Z[ Wip >0

-

E e
r) L, )
L

r

P
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which proves that a solution cannot exist.

This means that if two stimulus patterns are placed in all
possible positions on a retina, the resulting classes of stimuli cannot
be correctly discriminated by a linear perceptron. As a consequence,
such systems are relatively uninteresting, even though they may successfully
discriminate a moderate number of patterns which are restricted to limited
positions on the retina. In all systems considered from here on, there will
be at least one set of non-linear components subsequent to the S-units in

the perceptron network.

10.2 Perceptrons with Continuous R-units

The next type of perceptron to be considered has simple A -units,
but continuous R-units, such that the response f“-’ = 4(u;) , with £ an
arbitrary monotonic function of /. ; . This includes the case of linear
R -units, where 4(wu:) - . «: . An important theorem which is
analogous to Theorem 4 of Chapter 5 deals with the ability of such systems
to learn arbitrary response functions (Definition 27, Chapter 4) under the
error correction procedure. A response function assigns an arbitrary
output signal (rather than just + 1) to every stimulus in W . We first

prove the following Lemma:

LEMMA 1: Given a symmetric positive definite or positive semidefinite
matrix, /., and any vector 7 , then & /-/}): O only if

()

H23
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PROOF: Since A4 is positive definite or semidefinite, there exists a

matrix 8 such that + =88 .
0= (}'H}) e (82,3})

=>5/7=0 $0=8I5}=/‘/}

THEOREM 2: Given a simple o« -perceptron with simple A-units, an

R -unit with a continuous monotonic sign-preserving

signal generating function, a stimulus world W (in which
each stimulus ultimately reoccurs) and any response
function #(w,) for which a solution exists, then by
means of the error-corrective reinforcement procedure,
the given response function can always be approximated in
finite time by an output vector R (W) + ¢ , where ¢

is a vector of elements (g,, G AELAG) 5 |6[| < ¢,
where ¢’ may be an arbitrarily small quantity greater

than zero.

PROOF': The following proof was suggested by R. D. ;Ioseph. From
Theorem 3 of Chapter 5, we know that under the conditions of the theorem,
a solution 72~ to the equation Gar - « exists. Suppose the system is
currently in the state » , represented by 6y - x . From the definition
of the G-matrix, and the fact that every stimulus must activate at least

one A -unit for a solution to exist, we have

~ (r/[/')m[n > ()
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The difference between the solution vector « and the present state X

is given by

6(’7..*'-/_/) = .- X

Let W =0) S F and

Then ;’.; = o

We wish to show that by applying an error correction method to one

component at a time of the vector 2+ < must ultimately go to a point

within the ¢  cube about 0. (The method will apply a correction of the

roper size until a response /- £ is obtained.) We know that w: = X
prop p F Tl 9t
J

Therefore, for the difference, ..~ , we have

A
V= e .
0% Z.‘¥‘~ 4
J

& ¢

1o
: % . . B ) VE
Since ‘5 is non-negative definite, we know that £ SRR B L o 2
. . "“f(-
> . Therefore, if

and from Lemma | we know that if e

- >, decreases as a result of decreasing G- / decreases; also,

if s+« (0 increases by increasing , F decreases (see Proof of

Theorem 4, Chapter 5). To prove the theorem, it is sufficient to show

that this implies that »~~ must ultimately enter the <" cube about zero.

Let = initial value of - at start of a correction step

"= initial value of 3, at start of a correction step
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Then for the correction, we have

AU,—I. = —M/-L.
allf[.
g ) -
2(3 ; ]u
e '

A . = 9 g

7 9ii

i L’ '
2 = [ 5]

’
"bl

e 2T
[o /
/ /—' dy. — 7 [u,‘."& 9:; ('}{. “}[//] c[g,;

’

E g

= /JfL',
/ s %
af =5 [w, “9:i(3:-3: )]
#

, 2

A
90/

s w2

Therefore, A4F < ~uv; < -¢
Hence, there can be only a finite number of corrections, since £ 2 0 ,
and the vector .« = «-x must converge to a point within the ¢ cube

about zero. But « is the input to the R-unit. Since /'A‘(u) is continuous,

7/

there exists an ¢ such that |[r"(u+a)-r"(u)|<e if o] € ¢ Ther e -

fore the response function coverges together with the vector «.~ . Q.E.D.
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The following Lemma and Corollaries establish that the various
weaker forms of correction procedures are also capable of yielding a

solution to R(W) .

LEMMA 2: For the same conditions as Theorem 2, given that a

solution exists, the set of all solutions forms a hyperplane

of dimension equal to the nullity of .

PROOF: Let Gx =w« be a solution. Of necessity «, = r; . Let

Gy = w be another solution. Then G (x —g) =0 , consequently x -y

is in the null space of G . Conversely, if - is in the null space of G,
then G(; -x)=0 . Therefore, G} = 0 , so that 3 is a solution. Q.E.D.

COROLLARY 1: For the conditions of Theorem 2, and a phase space which

is unbounded in all dimensions, the probability of conver-
gence to an arbitrarily close approximation to (W) by
means of a random-sign correction procedure or a random-

perturbation correction procedure may be less than 1.

PROOF: The random-sign and random -perturbation procedures were
defined in Section 5.6. ¥ (W) is taken to be any response function,
obtainable by an R-unit with a monotonic signal generating function. For
convergence to occur, it would be necessary that a series of steps by
increments of fixed magnitude, f)?l , but of random sign, should carry
the system from its initial state to an arbitrarily small distance, ¢ ,

from its required state. From Lemma 2, the sclution states form a hyper-
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plane of dimension equal to the nullity of ¢, which has zero measure over
the phase space of the system. But a random walk of the type described
may carry the system arbitrarily far from its starting point, in a random
direction, and the probability that a vertex of this path will fall within a

distance ¢ of the solution hyperplane may be less than unity.

COROLLARY 2: Given the conditions of Theorem 2, and a phase space

bounded in all dimensions, then (given that a solution to

< () exists in this bounded space) the response function
can always be approximated by means of the random-sign
correction procedure, the system converging in finite time
to an approximation {((V) . ¢ , £ a vector, where

’

|¢.t < < for arbitrarily small « > 0

PROOF: Since the phase space is finite, the set of solution points within
the bounds defined above has positive measure. The random-sign correction
procedure cannot carry any of the A-unit outputs beyond the limit set for its
value; therefore, if the values approach their limit in any direction, a ran-
dom walk in the opposite direction will follow. This procedufe will
ultimately take the representative point of the system into every 'set with
positive measure, provided » is sufficiently small. Consequently, a
solution within the bounds stated by the theorem will be obtained in finite

time.

COROLLARY 3: Given the same conditions as Corollary 2, the

response function can always be approximated by

the random-perturbation correction procedure, the
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system converging in finite time to an approximation
R(W)+ ¢ , € having elements of magnitude |¢;| £ |)f|

. . . } ’
if the reinforcement is quantized, or [¢;] £ ¢’ > 0O ;

if 7 is chosen from a continuous distribution around

Zero.

PROOF: The proof follows the same line as that of Corollary 2. Since

each connection can be set to an independent value, in the quantized case
the total error over the set of all connections need not be greater than 7

while in the continuous case it may be made arbitrarily small.

Theorem 2 and its corollaries indicate that it is possible to
teach a simple perceptron to produce responses which are proportional to
some metric feature of the input stimuli, such as their size, or coordinates
of their center of gravity on the retina. In the latter case, the output of
such an R-unit can be fed back to the optical system to control the centering

of a stimulus in the field.

10.3 Perceptrons with Non-linear Transmission Functions

In all perceptrons considered thus far, the transmission

functions of connections from A -units to the R-unit have been of the form

A - = f/l. Pt
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We will now consider functions of the more general form:
- X \
e %(af’ Vir/

Where time is not specified, this is understood to mean

cip(t) - it -7), v (t)

* 0 .
S il c e e N SN & Biu n ¢ § i oin of the input signal, o, , the transmission
function can be written in a still more general form (allowing for various types

of signal-generating functions in the A -units),
VAr Flovi s

e ! PAl

This form will be employed in the following theorems.

THEOREM 3: Given a simple perceptron with a simple R-unit, and with

transmission functions for all A-R connections of the form
- .,J7,., where / 1is any function, and given the
existence of a solution to a classification function . (W
for this perceptron, then if p(7/) is any polynomial of

odd degree in - , there also exists a solution if the

transmission function is changed to #/(v.) / (o, ,.) .

PROOF: A polynomial of odd degree can assume all possible values.
Therefore if , ,, is the original value of the connection <., , there
exists a solution to («) v, yielding a new value, » , for the
connection <., which will cause it to transmit an identical signal under

the new transmission function.
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THEOREM 4: Given the perceptron of Theorem 3, if a solution exists

for some transmission function £ (x;) vy, , a solution

does not necessarily exist for the transmission function

gloci) vip s g #f

PROOF: Suppose the number of A-units is equal to the number of stimuli )

in W . Let K& - matrix of elements b, represcnting the value of the
function f(~«; (;)) which is the coefficient of 2,. for stimulus Sj

Then for a solution to exist, there must be some vector /' and some

vector (/ in the orthant required by ( (W) , suchthat BV = ¢/ . But i B
is singular, there must be some / (W for which no solution exists. This
can be demonstrated by noting that each (/#, requires a solution vector in
a different orthant, the set of all ~'W) requiring solutions in every possible
orthant. But if £ is singular, it maps the entire space into a hyperplane,
and this plane must fail to intersect certain orthants. Consequently, the
functions (W) which are represented by vectors in those orthants have no

solution. Now consider the following cases:

CASE 1: For the transmission function o 2~ , let the matrix
g \
/1 1 1\\
A o= 1 2
Z 3
2 3 4

This is singular, and consequently there are some insoluble classifications.

Now change the transmission function to ‘ar , yielding 1 1 1
B - 1 4 9
4 9 16
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This matrix is non-singular, so that with the non-linear transfer function,

all classifications are soluble.

CASE 2: In this case it is shown, conversely, that there may be situations
in which a linear transmission function will yield solutions which are un-

obtainable with a particular non-linear function. Let the transmission

’ 8\
function be , with the matrix & - , 43 125 15‘: This matrix is non-
\5 13 &

singular, so there is a solution for every ~ (w) . But now let the transmig-

. : X /9 25 b4\
sion function be x “»~ . Then # Klé’ 144 225 which is singular,

25 169 289/

implying that there is some .,.i ' with no solution.

THEOREM 5. Given a simple perceptron with A-R connections which

differ in their transmission functions (or with uniform
transmission functions but non-simple A -units) a response
function #(W) may have a solution which is unattainable by
either the error correction procedure or the random-sign

correction procedure.

PROOF: Consider a perceptron with a single sensory unit and two A -units.
Let the R-unit be a linear amplifier with gain of 1. Let the sensory unit

emit signals 0, 1, or 2 depending upon the intensity of the stimulus. The
required response function is #(W ( ,+#/.-/) corresponding to a null
stimulus, a low-intensity stimulus, and a high-intensity stimulus, respectively.
Let the transmission function of «<,,. be ‘a2~ , and the transmission function

of ‘s, be r{zu' . The response function #£(W) then has a solution if we
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set 2, =2.5 and 7/,,= - /.5 . But this is the only possible solution,
and is unattainable by the error correction or random-sign procedures, since
both connections are always activated together and consequently must always
be equal in value under these procedures (assuming that their initial values

are equal). This example is sufficient to prove the theorem for the case of

non-uniform transmission functions.

For the second case, in which all transmission functions are
uniform, but the perceptron has non-simple A -units, consider the following

perceptron:

The values of all S-A connections are +1, and the A-units are both linear,
with transmission function o2~ . Let the environment consist of the two
stimuli 7 = 4, and < ={a,, 4,) . Then a solution exists to
the response function / I R , namely V. T B Uy = =2
However, the error-correction or random-sign correction procedures will
not work, since both A-units are always active (where "active''means that

they emit a non-zero signal). Note that a solution also exists to the B

classification /+/, -/) for this perceptron, and that this is also

unattainable by the methods indicated.
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The sixth theorem was proposed by R. D. Joseph.

THEOREM 6: Given a simple perceptron with any mixture of transmission

functions -FJ- (oLJ'

a response function £(W) for which a solution exists; then

) 7C-r) for the connections Crp and

there exists some transmission function ¢ (o ,2~) which

is uniform for all connections, such that a solution to (W)

exists.

PROOF: Let # (n; 7- ) = signal from unit ., when stimulus 5;

occurs. Then we can fit a polynomial

n-1
o : 4,
#J- (Q’J' o), ’?/:/-{,/ = Z/ ,C'J‘é ’>CJ' )
b=0
for each stimulus S, . The coefficients, €4 (which depend on the

A -unit, @, ) can be replaced by polynomials

N -t

= '/
Coyp cely) ZL brg g
4 £-0

Thus we have, for all values of /,

n-1 Ny~/ ;4
Fjlocs b0, woje) = 0L 0, bygd "o (i) = g et )
A=0 £=0

which satisfies the conditions required by the theorem for ¢ (o, 2r)

if we set Vo g
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It should be noted that this theorem applies only to a given response
function for which a solution exists; if a different response function also has
a solution, then there will again be a uniform transmission function for all
A -units which will solve the problem, but this transmission function may

differ from the one obtained for the original response function.

We have seen in Theorem 5 that if the connections differ in
transmission functions, or the A-units differ in signal generating functions,
response functions may have solutions which cannot be obtained by the more
systematic correction procedures. The following theorem proves that in
this case the weakest of the correction procedures (the random perturbation

method) can still be used successfully.

THEOREM 7: Given a simple perceptron with an R-unit which is either

simple or has a continuous signal generating function,
and with any combination of transmission functions from
its A-units (all continuous functions of z-, , equalto
zero if ~. - 7 ), and given a bounded phase space
within which a solution exists for #(W) ; then, if each
stimulus in W ultimately reoccurs, an approximate

solution ~ (W) + ¢ is always attainable in finite time

by the random-perturbation correction procedure.

PROOF: For an R-unit of the specified type, and a bounded phase space,
the solution set has positive measure, over the region defined by # (W) + ¢

!

(where < consists of arbitrarily small elements, £; < ¢ ) . To achieve

an approximate solution within this set, it is only necessary to adjust the

values of the active A -units for each stimulus. Since, under the random
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perturbation procedure, each active connection will independently tend to
assume a value in every admissible range with positive measure, the active
set of connections as a whole will ultimately attain a value configuration

within the solution set.

10.4 Optimum Transmission Functions

The general conclusions of the preceding pages are that while a
completely linear perceptron does not work satisfactorily, there are many
possible transmission functions which seem to work quite well. For many
of these, there is no choice to be made from the standpoint of ability to
achieve a solution, for they all seem to be capable of solving the same
problems equally well. From the standpoint of efficiency of discrimination
and speed of learning, however, the various transmission functions might
differ considerably from one another. In this section, making use of an
analysis due to Joseph, it will be shown that with some fairly weak constraints
on the system under consideration, an optimum transmission function exists,
and that this takes the form of a quadratic function of <~ ,. rather thana

linear function.

The constraints on the system to be analyzed are as follows:

1. The analysis deals with S-controlled discrimination

experiments, with a fixed training sequence.

2. The conditional distribution of 2, for connections activated

by a test stimulus of the positive class, 5, , is assumed to be independent

2

of the choice of D Similarly, the distribution of 2, for active
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connections is assumed to be independent of the exact choice of 5, when the

test stimulus is selected from the negative class.

3. It is assumed tHat the conditional distribution of -, for
the connections activated by 575 is a normal distribution, and that either
the distributions are different or the probabilities Q; are different, for
test stimuli in the positive and negative classes. These constraints will
generally be met satisfactorily if the positive class consits of all possible
positions on the retina of a large stimulus, and the negative class consists
of all possible positions of a small stimulus. The main requirement is one
of equivalence of stimuli within each class, and dissimilarity between classes,

with respect to the distribution or number of signals transmitted from A -units

to the R-unit.

The discrimination problem can be stated as one of testing a

hypothesis about the test stimulus, The response unit is required

5
Ve

to test the hypothesis that S~ is a member of the positive class against

the possibility that it is a member of the negative class. If the test stimulus

1s a member of the positive class, the output of an A-unit (subject to the

above assumptions about the system being analyzed) will have the distribution

0 with probability /- @, (+)

| Dx () [ y (20.3)
2~ with density function =Xl exp. - —5 (v-se,)
\ 14T Ty { 29
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where (,(+), 07, , and ¢, are the parameters characterizing
stimuli of the positive class. Similarly, if the test stimulus is a member of

the negative class, the output of an A-unit will have the distribution

0  with probability /-Q, (-)

P (10.4)
. . . Q;((“) / 2 7
2r with density function —"—— exp. [— —z (v-u )78
i 2 -)
. 2T o) L 20 ’ J
where 7). . (-), o, ,and /., , are the parameters characterizing

stimuli of the negative class. Thus, the problem can be restated as one of
testing whether the output of an A-unit has the distribution (10.3) or the

distribution (10.4).

There is thus a simple hypothesis (dealing with a single distribution)
and a simple alternative. As Joseph has observed, under these conditions,
for any significance level, the likelihood ratio test is most powerful. In
performing this test, we would make A independent observations of 2~
(corresponding to a sample of ' A-units with independent origin point

configurations), and obtain the likelihood ratio:

) (+)

= o Lo N_N;O (1o N ' / 2 / | : )

Jrof 8 X)) exp. 4= —- 5 y("gr.—//. N *——«‘ZJ(?/"-U, )‘L L
o ~ - | ya . / _ & IR

(/ Jt(,)) (@_/ ) "o = T 205 G 7

-263-




where N is the number of active A-units, and the summation on ( is over
active units only. If . is greater than a preassigned constant L, , we

accept the hypothesis that S, is a member of the positive class; if L

X
is less than [, , we accept the alternative, that S, is a member of
the negative class. The constant (L, , corresponding to the threshold
of the R-unit in a perceptron employing this procedure, determines the
power and significance of the test. (The ''significance' is measured by

the probability of erroneously rejecting a positive stimulus, and the "power"

is the probability of correctly classifying a negative stimulus.) In logarithmic

form, the condition L = L, becomes
[ ! ¢ 4 o0 //wz £(1-Q,(-)) .
Z o 2 [y A M) i), oy . Qux (1 (1-Qy (=) o,
2—2_;2__20:7 i Na2 TG/ Vit oz Tz T g
(-) (+) - T () (+) Qe ) (1=Qy (+)) 07

N
> Ag (’ - '—/}’_(-«),)

4 . - N
\/_ L(Z +/)

Thus, the required test is effectively performed if the perceptron is designed

with R-units having a threshold Zn L,+ N Za ;_—g";;)} and the transmission
[4

functions from A to R-units are of the form

.
t o < B
#(3‘17/')_
/ / 2 M My, ,u,‘_z) /A(f} Q) (1-Q ('))(7’(_ ;
€7, ROy T T RT L) 2Ty, Sx 1=y (W),

The actual savings that might be obtained by the use of such a
quadratic form have not been investigated numerically. In practise, they
are probably slight. A further discussion of the optimization problem, inclu-
ding the optimization of the upper and lower bounds in a bounded value per-

i

ceptron, can be found in Joseph, Ref. 41.

b
Prof. A. Gamba, in a related paper, has observed that not only the trans-

mission functions but the reinforcement rule might be profitably modified
in order to optimize the overall decision function of the system (Ref. 23).
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11. PERCEPTRONS WITH DISTRIBUTED TRANSMISSION TIMES

One of the requirements for a simple perceptron is that the
transmission time, --T[J' , should be equal for all connections, LL-J-
In this chapter, we consider the consequences of allowing a distribution
of transmission times. It is obvious that under these conditions the set of
A -units active at time ¢ will depend not on the single momentary stimulus
occurring at time 7 -7, but rather on the entire sequence of stimuli
occurring between ¢ - Tmin and [ - Tmax' We shall first consider the cases
of binomial and Poisson models where T;; s distributed with a discrete
spectrum, [ always being an integer equal to or greater than 1. We

shall then consider the case of a continuous Gaussian distribution for T

11.1 Binomial Models with Discrete Spectrum of @7

For the binomial case, we shall consider only the case where
each A-unit receives a fixed number of connections of each type (excitatory

and inhibitory) with 7. = 1, and a fixed number with (I 2.

Specifically, the parameters of an A-unit are:

& = threshold (defined as usual)

r, = number of excitatory connections with (T /
y, = number of inhibitory connections with v =
r, = number of excitatoryconnections with 7;:/- =2
Yy, = number of inhibitory connections with T, =2
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Models with a greater number of possible values for 7;- can be analyzed

Y
by extensions of the method applied here. The object of the analysis is to find

G, and O[J' at time ¢ , as functions of the two-step sequences of stimuli:

g = Sp(t-2), S;(t-1)

t L

o SJ-'(t-/i), S;(¢-1)

The notation &/ will be used consistently to denote the stimulus preceding

the terminal stimulus in sequence J; . Similarly, in sequences of more

than two stimuli, SEL2 will be used to denote the third stimulus from the

end, etc. In the present model, 'sequences of length greater than 2 need not
be considered. If it is assumed that A to R-unit connections all have equal
transmission times, the analysis of performance in terms of the Q-functions
will be identical with the analysis for simple perceptrons, the important
difference being that the perceptron is now learning to recognize sequences

of stimuli, rather than isolated momentary events.

The total input signal to an A -unit at time ¢ , c¢(¢) , is now

a sum of four components, namely,
o(t) - F, + E, I, -1,

where /£, =number of excitatory connections with 7" =1, having origins

active at ¢ -/

1, having origins

I, = number of inhibitory connections with

active at # !

2, having origins

£, = number of excitatory connections with 7

active at ¢ 2
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[ . = number of inhibitory connections with 7 =2,
having origins active at # -2 .
‘l' . .
As usual, =, (z'=/ if o (¢)> 6 , and 0 otherwise. §; is then

given by the following equation, which i analogous to (6.1):

QL. = ? /}/i (/:-//‘ /JZZ(‘L.Z) /"//(—//\ _'_[/“(‘:—‘2) (11.1)

EjpF,-II, 22

where the probabilities /;, #, , #, and /£, are defined as in (6.2), with

the substitution of the appropriate parameters, and the stimulus measures #;
in the expressions for =, and F# / and 4./ in the expressions for /’,
i

and [

In a similar manner,the expression for | ~ can be obtained by
the extension of the treatment employed in Equations 6.5 and 6.6. However,
there are now eight components to be considered for o for each stimulus

sequence. Specifically,

where /. and 1, are defined, as before, as the excitatory and inhibitory
components originating from the set of retinal points situated in 5, and
notin .- , /. and I,/ are the corresponding components originating

from the set of retinal points situated in S:/ but not in ST and ﬁJ- ,

I-. <., and ;¢ are similarly defined. Likewise, £ . and /. are the
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excitatory and inhibitory components coming from the retinal set common

to S and . , and E[, and Ic’ , are the components from the set

common to S;» and S5 . Thus we have the equation

Q= E Af’l-l(ﬁ-,/—‘J-,£[_)P/,(IL-,IJ-,./;.)PLI(E;', E;y ) Py (T i L) (11.2)
.)’X(t.)étj‘
le(;)>A

The required multinomial probabilities being computed from equations (6.6)
with an obvious extension of the above notation to the quantities 4. , AJ- :

€y Apw Asyand O,

Since the Poisson model is much easier to compute, and has
properties which are similar in all essentials to the binomial model, no
numerical examples are given for the binomial model, but examples for the

Poisson model can be found in the following section.

11.2 Poisson Models with Discrete Spectrum of 7/

The Poisson model to be considered again has two values of 77,
namely 7 = land 7" = 2, the parameters x,, v,, ¢,, and g,
being defined analogously to x and ¢ in the Poisson model considered in
Chapter 6. The equations for (). and (‘)[j can, of course, be developed
by extension of the equations of Chapter 6, as has just been done for the
binomial model. A considerably simpler approach is possible in the Poisson

model, however, if the corresponding stimulus areas at times #-/ and ¢ -2

are also equal, i.e., AN A , /IJ' - AJ-/ ,and (¢ = C’. In this
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case, the previous equations (6.1, 6.3, 6.5, and 6.7) hold without modification,
except that ¥ = ,+x, and y = y,+y,. More generally, the previous

equations can always be employed by making the appropriate substitutions:

\ E T G T
¢ / ’ “ ¢
{ ok 24 W
: =g Y
Y ) ;] i I}A i
¢ A YA+ T A
J 1 E)
- 3 o,
X Y, Xy
and similarly, for the inhibitory components. If x, - 2, and ¢, = y, ,

the equations for (7 ani O[J' again become identical with the equations

: r
of Chapter 6 where &- o Rorsy Ar = (A + A) , etc.

t

By an obvious extension to a spectrum with three or more values of 7=

where  + : - ¥ yand <, - o, v ...%qg , we can apply

! o 1 o

the same equations. substituting the parameters

,\
S
S
—
~
=
x
S
L.

and similarly for .  and
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As an example of the performance of such a system, consider
a Poisson model perceptron with an expected value of 6 excitatory and 6
inhibitory connections to each A-unitand & = 2. Let the environment
consits of a set of 4 by 20 vertical bars, such as were employed in the

experiments of the preceding chapters. The object will be to discriminate

a bar arriving at a certain fixed location by movement from the left from a

bar which arrives at the same location by movements from the right. Clearly,
if a single value of & s permitted, this task is impossible. Consider

first the case in which half of the excitatory and half of the inhibitory connections

have 7 =1 and the remaining half have 7" =2, sothat x, - %, =y, =y, = 3 .

Let sequence J! denote (’5<L(t—_i’), Sp(t-2), S, (z‘—/)) and :JJ- denote

('/5:,,(7‘—3,), 5y (¢-2), _C,l__(t—/)) , where ¢, ,..., 5, represent successive
adjacent positions of the vertical bar on the retina. Then e Qe = 153,
and (’(f[J- .094. Next, suppose one third of the excitatory connections

and one third of the inhibitory connections have delays 7 = 3 , one third

have r =2 , and one third have 7=/ , sothat t, - 7, =1, =4 ~§, = g3 =2.
In this case, @.- - .153, as before, but .- is reduced to .063. Further
increasing the spread of the - distributuion will have the effect of further

reducing Qe (for correspondingly lengthened stimulus sequences) while
keeping (y,; constant. Thus, the greater the spread of the 7 distribution,
the more readily caﬂ such "divergent" time sequences be distinguished.
Conversely, two sequences which are identical save for a momentary
divergence in recent time (say at / -/ ) can be distinguished most readily
by a perceptron with 7-. concentrated at small values, and increasing
the spread of the 7 distribution will only increase the difficulty of

discrimination.
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It should be emphasized that the set of active A-units depends

on the order and not merely on the constituents of a stimulus sequence. Thus

the sequence (5, y 5.8 53 ) will generally activate a different set of A-units

2
from the sequence ( 5, , 7, , 5, )in which the first two members have been
inverted. In principle, a perceptron of this type which receives sequences of

sound spectra from a set of audio-filters (instead of visual patterns) should be

capable of distinguishing spoken words, or other characteristic sound sequences,

such as progressions of chords or melodic fragments.

11.3 Models with Normal Distribution of 77;

A somewhat more ''natural' model than the discrete spectrum
models considered above is one where the transmission time of each connection
is an independent random variable drawn from a normal distribution, with
parameters ««/7) and o (7r) . If an A-unit is to have a non-zero proba-

bility of being active at time ¢ in such a model, the dynamics must be

modified by the introduction of an '"integration period", 4% , such that
t
g () = Z E(T) - I(T)
T=t-At (11.3)

summing over all values of 7 for which £ or I ({he numbers of excitatory

or inhibitory impulses arriving at the A-unit) are non-zero.

The qualitative properties of such a system are clear without
further analysis. If A4¢ is short compared to o (7) , the presentation of

Al
a momentary“or transient stimulus will lead to a gradual increase in the
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proportion of responding A-units (or the value of (. )followed by a gradual
decrease. If A¢ is greater than o (r) , the system will respond with a
momentary burst of activity, maintained for a period equal to 4# , and
will then immediately relapse to inactivity. We are chiefly concerned with
the case where At is less than ~ (7). In this case, the performance of
the system in discriminating sequences will be close to that of the Poisson

—-—

or binomial models, with an appropriate discrete spectrum of L)oo to
approximate the normal distribution. There will be a maximum sensitivity
to differences between the two sequences “4[ and JJ- occurring at
time ¢ - «(7) , with less sensitivity to more recent or more remote

differences between the sequences.
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12. PERCEPTRONS WITH MULTIPLE R-UNITS

Up to now, the simple "three-layer' topology (S-A-R) with a
single R-unit has been the only one considered. In this chapter, we will
still consider only three-layer perceptrons, but more than one R-unit will
be permitted. The performance of such systems, it will be seen, does not
differ significantly from that of perceptrons which have been considered in
previous chapters, except for the fact that it is now possible to form classi-
fications with more than two classes, with simple R -units, or to have
perceptrons respond simultaneously to several different attributes of a
stimulus pattern. The most interesting analytic problems for such systems
are concerned with the optimum coding of the classes of patterns to be

recognized, in order to optimize performance.

12.1 Performance Analysis for Multiple R-unit Perceptrons

Several types of topological organization which are possible for
networks with more than one R-unit are illustrated in Figure 35. The set of
A -units which are connected to a given R-unit will be called the source-set
of that R-unit. The organization which is most economical in the number of
A -units employed is that shown in Fig. 35(a), where every A-unit is connected
to every R-unit. This is logically equivalent to the disjoint source-set model
shown in Fig. 35(b), if every source set is required to have the same compo-
sition of origin point configurations for its A-units. Unless otherwise specified,
it will be assumed that each R-unit receives the same number of input
connections; however, if the R-set is large, and the terminus of each connection

from an A-unit is selected at random, the total number of inputs to each R-unit
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(a) EVERY A-UNIT CONNECTED TO 4 R-UNITS. (IN FULLY COUPLED CASE, & = N,)

=

T s s

(b) DISJOINT SOURCE-SET FOR EACH R-UNIT. (SPECIAL CASE OF (a) WHERE & = I)

Ay-SET > Ry

Figure 35 TYPES OF TOPOLOGICAL ORGANIZATION FOR PERCEPTRONS WITH MULTIPLE R-UNITS
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(i.e., the size of its source set) will be a binomially distributed random
variable. An inversion of this connection procedure is shown in Fig. 35(c).
In this case, each R-unit receives exactly N connections, but the origins
are assigned at random among the A-units. Here the number of output

connections from an A -unit will be a Poisson distributed random variable.

It can be readily seen that as //  becomes large, the various
topological connection schemes illustrated in Fig. 35 all become logically
equivalent in their performance characteristics, since it does not matter to
the performance of the perceptron whether two R-units are connected to the
identical A-unit or to two different A-units with equivalent origin point
configurations. For the sake of specificity, the following discussion will

assume the organization illustrated in Fig. 35(b), with a disjoint source-set

for each R-unit.

In S-controlled discrimination experiments, it is obvious that
performance of such a system in equivalent to that of A, simple perceptrons
(where N, s the number of R-units) each of which is-exposed to the same
training sequence, but trained on its own independent dichotomy of the environ-
ment. For example, if Ve = 2, one R-unit might be trained to discriminate
between stimuli in the upper and lower halves of the field, while the second
R-unit is taught to discriminate between right and left halves. The proba-
bility t hat both responses are correct, at the end of the training sequence,
will be the product of the probability that £, 1is correct on its dichotomy,
and the probability that # is correct on its dichotomy. In the present case,
assuming that stimuli occur with equal frequency in all parts of the field, we
would expect the two dichotomies to be equally difficult, so that the probabi-
lity of correct performance on the joint response would be the square of the

probability of correct response for either dichotomy considered separately.
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In an error correction procedure, a more interesting problem
arises. Clearly, if each R-unit and its set of input connections are corrected
on an assigned binary classification or response function independently of the
other R-units, the same situation exists as in S-controlled experiments, and
the probability of correct response on the entire set of /, R-units after a
given training sequence will be the product of the probabilities for each of the

response functions considered separately. More generally, if we let

Fe (R 0vl N = probability of correct response on test stimulus 2,

i 7

. th . :
for the ( response function, given a source-set with /- members

connected to the R-unit, we have

/ ) o~ \ '
P (R, RL) - {TPX(VL-(W/,N[ ] (12.1)
for the probability that the joint response to .., is correct on all R-units.

Suppose, however. the reinforcement control system is only
capable of recognizing that the total response (on all R-units jointly) is right
or wrong, and cannot tell which individual R-units are contributing to the
error. In this case, it might be supposed that the system would eventually
learn the correct joint response by assuming that every R-unit is wrong
whenever an error in the composite response occurs, and correcting the
perceptron accordingly. This supposition, unfortunateiy, is not true,

as proven by the following theorem.

THEOREM: Given a perceptron with more than one R-unit, and a
response function A/W) or a classification (W) for which

a solution exists, it may be impossible to achieve
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this solution by an error correction procedure which
applies negative reinforcement jointly to all R-units

based on errors in the joint response.

PROOF: The theorem can be proven by a simple example. Consider the
perceptron illustrated below, which has two sensory units, two A -units,

and two R-units. (The topology corresponds, in this case, to Fig. 35(a).

'\—/ 2 tﬂ"n £ v i
bl
e
o0 - & Hh'k -
5.0 = -
F Laz =
2
Assume all -~ . initially = + 1. Let ¥ consist of two stimuli: §,

illuminates sensory point < alone, and 5. illuminates A, alone. Let

<

the required joint classification function be:

Ld *
(r, r

bl 0 = (=1, 4 1) for S
A solution clearly exists, e.g., by making » -~ and .. positive, and 7/,
and a negative. Since all 777, are initially positive, whichever
stimulus occurs first (say ., ) will elicit a positive output from both R -units,
which is wrong. The error correction procedure would then apply negative
reinforcement to both R-units, having the effect (if 5/ is the stimulus) of

making both connections from , negative. But thHis now makes both

/
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R -units negative, which is still wrong. Clearly, the error cannot be
corrected by reinforcement in the presence of 5, since the signals to
both R-units are coupled, and must rise or fall together. If the second
stimulus should occur, the situation is not improved, and the same oscil-
latory behavior will continue, with the perceptron switching from

( r'l*, r;) = (+1,+1) to (~/,-1) alternately. Thus a solution will

never be achieved, which proves the theorem.

Note that if, instead of administering negative reinforcement
to all R-units (which assumes that each one is currently wrong) the error
correction procedure were to be modified to apply a correction to each

response unit according to the rule
e = (K- ) (12.2)

where /77 value of 7 employed in reinforcement of the /. connections,

s

*
and A, and ¢, are the required and obtained responses, respectively,

. th . , . .
for . R-unit, we then have the same conditions as in the case of

independent correction of each R-unit (see Definition 41, Chapter 5). Thus,
if we let ; _ R ~* be a vector of N, components, the [th component
being given by (12.2), the system will always converge if a solution exists.
This implies, however, that the r.c.s. must not only be able to recognize
the existence of an error in some R-component, but must be able to deter-
mine the magnitude (or at least the sign) of the error for each R-unit
independently, and control an appropriate value of »;  for each section

of the network. A logically similar procedure, which also yields a

solution, is to allow the r.c.s. to scan the R-units sequentially, checking
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the correctness of each one in turn, and applying a correction only to the
R-unit currently being examined by applying negative reinforcement when
it is wrong. This requires a longer training process, but requires the r.c.s.

to act on only one component at a time, just as in a simple perceptron.

12.2 Coding and Code -Optimization in Multiple Response Perceptrons

A perceptron with a large number of R-units can clearly be
used to identify many more than two alternative kinds of stimuli. A number
of possible schemes for the representation of information in such systems
have been suggested. As a first possibility, each response may be used to
identify an independent trait, or property of the stimulus, such as left/right
location, size, horizontal or vertical elongation, etc. The combination of
responses occurring when a test stimulus is presented should then serve as
a description of the stimulus in terms of its traits. An alternative scheme
is to assign a distinct response unit to each kind of stimulus, and train the
perceptron to emit a +1 response only if that type of stimulus is present.
In this case, only one R-unit at a time would be active, the active unit
identifying the stimulus class. Unlike the first scheme, where some response
must be made for every binary trait whether applicable or not, the second
scheme has the possibility of rejecting a stimulus altogether as ''unknown'’,
in which case all R-unit outputs would be negative. On the other hand, the
second scherne lacks the economy of which the first is capable, and requires
that every combination of traits which is to be distinguished must be assigned
a special category and taught to the perceptron before it can be recognized.
In the "trait discrimination' approach, a new configuration may still be

correctly described, in terms of the characteristics present, even though it
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has not been seen before. (This last feature is only weakly present in
the perceptrons considered thus far, since it depends strongly on generali-
zation. Some of the perceptrons to be considered in later chapters, which

generalize more effectively, can make optimum use of ''descriptive codes''.)

The above examples illustrate two types of response-codes, which

will be called configuration codes and position codes, respectively. A

configuration code employs the R-units independently of one another, assigning

an arbitrary dichotomy to each. This results in the assignment of a binary

number (if the R-units are two-state devices)to each stimulus. The total num-

ber of stimulus types which can be encoded in this fashion, for a perceptron
with /V/() R -units, is ZN’? . A position code, on the other hand, permits
only one R-unit to be "on'" (or in the positive state) for any one stimulus; the
code takes the form of a binary number of ~, bits all but one of which are
zeros. The position of the non-zero bit indicates the class of the stimulus
identified. With this system, only A, types of stimuli can be recognized.
The position code can be considered a special case of a configuration code in
which the positive classes of all dichotomies are disjoint, and the negative
classes are almost completely intersecting. A compromise between the two
approaches (which permits a descriptive statement to be obtained about a
stimulus without forcing a decision on inapplicable characteristics) would
assign n response units to each set of » mutually exclusive traits (for
exampie, 2 R-units wauld be assigned to left/right description, 3 to hori-
zontal, vertical, or diagonal specification, etc.). Each R-unit would then
be made to discriminate between ''trait present' and '"trait absent",

permitting any combination to occur. Such a system will be classed under

configuration codes.
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The problem of finding an optimum code for a particular task can
be specified for a given value of NP , an environment, W , and a classifi-
cation, (,1V) , into N types of stimuli. Clearly, if /' is greater than NE' ,
a configuration code must be used, or the problem is insoluble. If N is
commensurate with A, , however, we have a choice of either assigning
a position code, in which each R-unit identifies the presence or absence of
a single type of stimulus, or assigning a configuration code, in which each
R-unit is assigned an arbitrary dichotomy. In general, the problem is to
find the optimum set of dichotomies to be assigned to the R-units, so as to
obtain the greatest probability of correct identification for an arbitrarily
selected test stimulus. Let us assume all stimuli equally likely to occur,
and all classes of equal size (i.e., an equal number of stimuli in each). The
number of A -units connected to each R-unit is also assumed to be constant,

Let the vector . ' = (/" "_‘, / _ = the correct response
vector for a given test stimulus. Then, from equation (12.1) we are

required to maximize

Since we further assume that °  is chosen arbitrarily, and that every
stimulus is equally likely to be chosen as a stimulus, we require the

expected value

o (12.3)
to be maximal. The choice of dichotomies which maximizes (12.3) would be

considered an optimum code for the environment and perceptron in question.
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At present, no general solution to this problem has been found. Several
heuristic cues as to the organization of optimal codes are worth noting,

however.

(1) If a given stimulus class has members which are
disjoint from the stimuli of all other classes, while the remaining classes
have large retinal intersections, it will clearly be advantageous to employ
a single R-unit for the recognition of the stimulus class in question, with a
highly assymmetric dichotomy which does not attempt to divide .
the remaining stimuli into two sub-sets, but takes advantage of the

"natural' dichotomy formed on the basis of location.

(2) If the relationships of all stimulus classes are symmetric,
so that no two classes tend to ''stick together'" more than any other two
classes, and no pair of classes are easier to discriminate than any others,
and if S-controlled reinforcement is to be used, it will probably be best to
use equal dichotomies for all R-units, ( ’712 stimuli in each positive set) so
as to avoid asymmetric generalizations from the larger set to the smaller
one. The resuits of the frequency bias experiments, illustrated in Figs. 16
and 25, appear to support this conjecture. Where an error correction
method is used, however, empirical results suggest that asymmetric

dichotomies are preferable.

(3) There exist classifications which cannot be achieved by
means of a position code, which can be achieved with a configuration code.
For example, consider the following case: Let there be three stimuli in

W , such that 5/ activates e, , 52 activates a, and 53 activates
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both <, and n, . Let there be three simple R-units, each connected to
both <, and «. . Itis required to assign a unique code number to each
of the three stimuli. With a position code, the R-unit assigned to identify

must give a positive response when both ¢, and @, are active, but a

negative response when either ~, or ~ alone is active. This is clearly
impossible, with simple R-units. However, if a configuration code is

‘.
}

. . - i .
employed, we can assign the R-function __/r'/ N SR A

(+1, -1, -1) for
(-1, +1, -1) for 5,
(+1, +1, -1) for 5,
which is readily soluble, by an error correction procedure. [’? is
obviously redundant here, and is arbitrarily set to -1 for all stimuli.*
(4) A general rule, proposed by Joseph, is the following:
The smallest possible number of R-units should be required to distinguish

between very similar stimuli. The more dissimilar two stimuli are, the

more R-units may be allowed to place the two in opposite classes.

S

Note that in this example, it is possible to assign an arbitrary classi-
fication to an environment of 3 stimuli with only 2 A-units. This could not
be done with a simple perceptron (as proven in Corollary 2 of Theorem 3,
Chapter 5). The addition of a second R-unit in this model substitutes for
the missing A-unit which would otherwise be required.
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In empirical tests with the Mark I perceptron (such as the
experiments described in the following section) it has been found that the
choice of a code, even with binary numbers of a fixed length, can easily
determine whether or not a particular task is within the perceptron's

capability.

12.3 Experiments with Multiple Response Systems

The Mark I perceptron at C.A.L. is equipped with eight binary
R-units, and 512 A-units, which can be employed in any combination. The
network topology is of the type shown in Fig. 35(b). A number of experiments
have been performed (Ref. 30) dealing with the recognition of letters of the
alphabet and sets of geometrical patterns where multiple classifications are

required. Two such experiments are illustrated in Figures 36 and 37.

In Fig. 36, learning curves are shown for an S-controlled
experiment on the left, and for an error-correction experiment on the right,
In each case, the perceptron was taught to identify eight letters of the alpha-
bet, presented in the form of large block letters in random locations, over a
considerable part of the retinal field. In the error correction procedure,

each of the erroneous R-units is correctad simultaneously.

Figure 37 shows the learning curve for the entire alphabet,
presented in fixed position. A partially optimized binary code employing
five R-units was used here. This represents about the limit of the capacity
of the Mark I system. Attempts at teaching the Mark I to recognize all

26 letters in two type faces simultaneously have been unsuccessful, the
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maximum performance being about 85% on the combined alphabets, With a
discrimination task of this difficulty, any displacement of the patterns from
the position where they have been learned is likely to abolish the correct

response.

On easier problems, such as a four-letter discrimination task,
the choice of code is found to make little difference in system performance.
The code becomes critical only when the discrimination capability is marginal,
as in the 26 letter identification task. Given the choice between a position
code and a configuration code with the number of A-units in a source-set held
constant, the position code generally seems preferable with the kinds of
stimulus material employed in these experiments. If the same total number
of A-units must be divided among the source sets of the additional R-units
used for the position code, however, better performance is obtained with
the more economical configuration code, which uses binary numbers for

identification, with larger source sets.
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13. THREE-LAYER SYSTEMS WITH VARIABLE S-A CONNECTIONS

In the foregoing chapters, we have almost exhausted the
possible ramifications of minimal three-layer perceptrons, having an
S =A-R topology. Only one constraint remains to be dropped, in order
to obtain the most general system of this class: this is the requirement that
S to A-unit connections must have fixed values, only the A to R connections
being time-dependent. In this chapter, variable S-A connections will be
introduced, and the application of an error-correction procedure to these
connections will be analyzed. It would seem that considerable improvement
in performance might be obtained if the values of the S to A connections
could somehow be optimized by a learning process, rather than accepting
the arbitrary or pre-designed network with which the perceptron starts out.
It will be seen that this is indeed the case, provided certain pitfalls in the

design of a reinforcement procedure are avoided.

13.1 Assigned Error, and the Local Information Rule

In order to apply an error correcti;)n pfocedure to all connections
of a perceptron, including the S - A connections, we mus.t first re-examine
the concept of "error" which has been employed so far as a criterion for
reinforcement. In the theorem of Section 12.1, it was shown that it will
not do to assume that all units of the perceptron are equally in error when
a mistake in the total response occurs. It was seen that if all connections
are corrected, on the assumption that both R-units are wrong (in the two

R -unit case employed for demonstration) a solution may never be achieved.
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The alternative was to assign an error independently to each R-unit, by a
suitable criterion, and correct the connections leading to each R-unit in
accordance with the corresponding error indication. In the present case,
where A-units as well as R-units are to have their input-connections modified,

it becomes necessary to assign an error indication to each A-unit, as well

as to each R-unit.

In preceding chapters, the assigned error for an R-unit, £,. ,
was taken to be equal to (p* - r*) , where p* is the desired response, and
~*is the obtained response. A positive error meant that the R-unit was to
be turned to its positive state, and a negative error meant that it was to be
turned to its negative state, in the case of simple R-units. Similarly, for an
A-unit «a, , we might use a positive assigned error, £; , to indicate that the
unit is to be turned '"on', and a negative £ to indicate that it is to be turned
"off'", or made inactive, in response to the current stimulus. The difficulty is
that whereas £ *, the desired response, is postulated at the outset, the desired
state of the A -unit is unknown. We can only say that we desire the A-unit to
assume some state in which its activity will aid, rather than hinder, the

perceptron in learning the assigned classification or response function.

One possible way of obtaining the required activity states of the
A-units would be to examine each possible state of the system, with its
corresponding G-matrix, and determine whether or not a solution to the
assigned problem exists. If a state is found in which a solution does exist,
then the appropriate responses can be taught to each A-unit, by means of a

standard error-correction procedure, operating on the A-units in the same
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manner as on the R-units. Such an approach, however, evades the real
issue of finding a procedure which will guarantee convergence to a solution
without requiring that the reinforcement control system know the solution
state ahead of time. Specifically, in assigning an error-indication to an
A-unit, we wish to base the assignment only on the state of the network at
the time and locality where the error occurs. The following rule will

therefore be accepted as a working premise for all models to be considered:

LOCAL INFORMATION RULE: For any A -unit, a; the assignment of an

error £.(.) can depend only on information concerning the
activity or signals received by @ , the value of its output
connections, and the error assignment at their terminal points

at time £

In other words, only . itself and the points to which it is directly

connected can determine the error assignment.

13.2 Necessity of Non-deterministic Correction Procedures

By a '"deterministic reinforcement procedure' we mean that if
the same state of the system should occur repeatedly with all signals and
values unchanged, an identical reinforcement will be applied; and that if
two similar subnetworks are in the same state of activity, value, and error
assignment, they will be modified identically. Up to this point, no problem
has been found for which a solution exists, where a suitably defined
deterministic reinforcement procedure could not find a solution. The first

exception to this is stated in the following theorem.
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THEOREM 1: diven a three-layer series-coupled perceptron with

simple A and R-units, and variable-valued S-A connections,
and a classification C (W) for which a solution exists,
it may be impossible to achieve a solution by any determi-

nistic correction procedure which obeys the local inform-

ation rule.

PROOF: The proaf is by example. Consider the following network:

ey

C

oy
5

2 3
i

Let ~, and 2, have thresholds of 1, and let the stimuli of W consists of

!
4, alone (stimulus S5y ) or 4. alone (stimulus S, ). Let the required
2
classification be ([//', PZ‘) =(+/,-1) for S/ and (-/,+/) for 52
A solution clearly exists; for example, the following assignment of values

would be satisfactory:
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In this problem , a solution clearly requires an asymmetric assignment of
values for '"'parallel' and ''crossed' connections from each sensory unit and
from each A-unit. If we assume that all values are initially equal, then

either 2, and Q. are both on, or else both are off. In either case, one

of the R-units is wrong, and whichever one is wrong will induce a symmetric
correction of the values from both A-units. Moreover, since both a, and a,
are in indistinguishable states (whichever R-unit happens to be wrong) under
the local information rule both units must receive an identical error indication.
But then the connections from whichever S-unit is active will both be modified
identically, and the result is that the members of each value-pair (from each
S-unit and from each A-unit) are still identical. The required asymmetry
between "parallel" and ''crossed' connections can therefore never atrise, and

the same response must always occur for 5, and 5. . Q.E.D.

While this theorem shows that a deterministic procedure cannot
be guaranteed to work, it remains to be shown that a non-deterministic
procedure will work. In the most extreme case, we could employ a procedure
which randomly varies the value of every connection, independently of the others,
as long as errors continue to occur. In this case, if the phase space of the
system is bounded, a solution will certainly occur in finite time, but we have
already seen the devastating consequences of a much less drastic randomization
of the reinforcement process on learning time (c.f., Figure 19). In the
following section, a more systematically directed procedure is presented,
which can be shown to lead to a solution with probability 1, as in the case

of error correction procedures considered for elementary perceptrons.
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13.3  Back-Propagating Error Correction Procedures

The procedure to be described here is called the '"back-
propagating error correction procedure'' since it takes its cue from the

error of the R-units, propagating corrections back towards the sensory

end of the network if it fails to make a satisfactory correction quickly at

the response end. The actual correction procedure for the connections to

a given unit, regardless of whether it is an A-unit or an R-unit, is perfectly
identical to the correction procedure employed for an elementary perceptron,
based on the error-indication assigned to the terminal unit. Thus, if the
error £, s pos\itive, a correction is applied to the values of the active
connections terminating on 2. which would tend to increase the signal to o,
algebraically, eventually turning it "'on'; if £, is negative, a correction,

7 . of the opposite sign is applied to all active connections terminating on
@,; . The essential feature of the method is a probabilistic procedure for

it

assigning the errors, £;

The rules for the back-propagating correction procedure are

as follows:

1. For each R-unit, set £, P - f", where 2" =

. * .
required response and 7" = obtained response.

2. For each association unit, @, , £, is computed as

follows, for each stimulus: Begin with £ = 0.

a ) If @, is active, and the connection ;. terminates
on an R-unit with a non-zero error /;‘f, which
differs in sign from ;. 5 add -1 to £; with

probability 7,
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b) If &, 1is inactive, and the connection .,
terminates on an R-unit with an error £, which
agrees in sign with 2, , add +1 to £, with

probability o, .

c) If @, isinactive, and the connection .. terminates

on an R-unit with an error £, which does not agree

in sign with 7.,. (or if 2, is zero)add +l to [;

with probability Py
For all other conditions, £; is not changed.

3. f £.+2 ,add j toall active connections terminating
on the A or R-unit o taking the sign of 7 to agree

with the sign of £ . In symbols,

Lo = ] sgn(£))e

o

where ¢ is the magnitude of » .

In general, p, and p, are taken large relative to Py - The effect of these
rules is to try to turn off any A -units (with probability » ) whose output is
currently contributing to an error in an R-unit, and to try to turn on any

A -units (with probability g ) which are currently off, but whose out-

put signals would help correct an error in one or more R-units if they

were on. The purpose of the third probability, Py is twofold; first,

if no A-units respond to a stimulus, and all of the values have the wrong
sign or are zero (as in typical initial conditions) it guarantees that some

A -units will come on; second, it prevents the permanent loss of A-units

which might be necessary for the proper response to some stimulus,
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even though their values may have the wrong sign at some time during the
training procedure. If s and g, are larger than Py the main changes
in the network will clearly all tend to go in the direction of a solution. The
following theorem proves that the procedure is sufficient to guarantee a |

solution, if a solution exists, in the form of some assignment of values to the

network.

THEOREM 2: Given a three-layer series-coupled perceptron, with
simple A and R-units,variable-valued S-A connections,
bounded A -R values, and a classification 7 (W. for which
a solution exists, then a solution to (W, can be obtained
in finite time with probability 1 by means of a back-
propagating error-correction procedure, given that each
stimulus in ;1 a'ways reoccurs in finite time, and that
probabilities ,,, . ., and . are all greater than 0
and less than 1.

PROOF: The state of the S-A network can be characterized, for present

purposes, by an ‘. by : matrix, 7, which consists of the N, row vectors.
# /*, 3 (l‘-'“ y &7 ‘”

where ”';./ - IyO - signal generated by unit 2 in response to

stimulus "+ . Two assignments of values to S-A connections which yield

the same A -matrix will be called equivalent S-A states. To each such

}
¢

matrix, A , there corresponds a G-matrix for the perceptron. We will say
that a given S-A state permits a solution if the corresponding G-matrix is

one for which a solution to ¢ V) exists.
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First, suppose the system is initially in a state which permits
a solution. Then if it remains in this state sufficiently long, a solution must
occur with probability 1, due to Theorem 4, of Chapter 5. Since S-A
connections only change in value if the errors £ are assigned magnitudes
other than zéro, and since the probabilities P, Py s and 3 of assign-
ing non-zero £; are all less than 1, there is a probability p >0 that the
perceptron will remain in its initial state for any given finite time. Thus,

there is a probability greater than zero that a solution will be achieved

0,
sk

before any change in the A -matrix occurs.

Next, suppose the A*-matrix changes to some different state
before a solution is achieved, or suppose that the system starts out in a
state which does not permit a solution. Then it is sufficient to show that
the system will always return to a state which does permit a solution in
finite time with probability 1, and that the probability £ of obtaining a
solution for a given S-A state does not approach zero with successive
returns to the same state. If it does always return to such a state, then
each time it arrives at such a state, there will be a probability greater
than zero (and bounded away from zero) that it finds a solution before the
state is destroyed. Thus, with sufficiently many returns to states which

permit solutions, a solution will be found with probability 1.

It is now necessary to show that from an arbitrary starting

!
sl

state, the system will always achieve an A -matrix which permits a

solution in finite time with probability 1.
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If the current A -matrix does not permit a solution, then

either or both of the following conditions must be present:

(a) Some C,TJ- which should be | for a solution to be

possible is actually 0;

(b) For some LFJ- which should be 0 and is actually 1,
there must be a ;. the sign of which disagrees with
R for stimulus Sros

The second condition follows from the fact that if every active connection
from A to R-units has a <, with proper sign for every SJ- , and if
condition (a) is not present, then a solution already exists. Now suppose,
for an arbitrary A*—matrix, Stimulus 5‘/' occurs. Then condition (a) may
exist for some A-units, and condition (b) for others. For each A-unit
which is currently off (including all of those to which condition (a) applies)
Rule 2b or 2c of the correction procedure becomes operative, and there is
some probability that each such unit will receive an error indication. Since
we have assumed the activity of these units to be necessary for a solution,
and have postulated that a solution exists, there must be some assignment
of S-A values for each such unit which will turn it "on'" for SJ' . Since SJ-
is postulated to reoccur infinitely many times, then it follows from
Theorem 4 of Chapter 5 (treating the A-unit and its input connections as
equivalent to an R-unit) that the required /_‘:/- will ultimately be obtained.
Since each A-unit is corrected independently of the others, a state will
ultimately occur in which all of the A -units which were wrong by condition (a)
have been corrected. Next consider those A-units for which condition (b)

applies. For these units Rule 2a of the error correction procedure is
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applicable, and by the same argument as above, the ,C;J- will ultimately

all be corrected. But in that case, we have arrived in a state which permits
a solution. Since there is nothing in the above argument which depends on
states prior to the arbitrary starting state, the system can arrive at states
permitting solutions indefinitely often, and a solution must therefore occur
with probability 1, provided the probability # of finding a solution while in
such a state does not approach zero. This last assumption, though plausible,

still remains to be rigorously proven for the general case.

For the special case in which the values 2/, are bounded, the
remaining assumption can be proven without difficulty. In the proof of
Theorem 4, in Chapter 5, it was shown that the number of corrections

necessary to find a solution is at most equal to

M (L + 6/7')2
(€-0)%

where M and (v are constants depending only on the G-matrix (and
therefore on A*), and 4 is the length of the vector #x° . Thus the
number of corrections required to find a solution can incrase only as a
result of an increase in the magnitude of some components of the starting
vector, a © , upon successive returns to the same S-A state. But if all
values 7-,,. are bounded, the compénents of 2¢ are also bounded. Conse-
quently, 4 has an upper bound for any given // (or for any given A*).
This means that there is a maximum number of corrections that might
possibly be required (assuming that a solution exists) and that the proba-

33

bility p of arriving at a solution before destruction of the A state is not

only greater than zero but must be bounded away from zero, Q.E.D.
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13.4  Simulation Experiments

At the present time, no quantitative theory of the performance
of systems with variable S-A connections is available. A number of simu-
lation experiments have been carried out by Kesler, however, which
illustrate the performance of such systems in several typical cases, shown
in the accompanying figures.):< In order to show the performance of the
variable S-A system to its best advantage, small perceptrons were used, for

which the learning of a horizontal/vertical bar discrimination (Experiment 6)

falls short of what might be obtained with an optimum S-A organization.

Figure 38 illustrates the effect of various combinations of the
probabilities RN and . . (including the 0,0,0 case where all S-A
connections remain fixed, for comparison). The curves show the mean
performance for 20 perceptrons, with 50 A-units, having 10 input connections
to each. The initial values of all S-A connections are set equal to +10, and
the threshold is 50. The same set of 20 networks and training sequences

was used for each probability combination.

It is found that if the probabilities of changing the S-A
connections are large, and the threshold is sufficiently small, the system
becomes unstable, and the rate of learning is hindered rather than helped
by the variable S-A network. Under such conditions, the S-A connections
are apt to change into some new configuration while the system is still
trying to adjust its values to a solution which might be perfectly possible
with the old configuration. Better performance is obtained if the rate of
change in the S-A network is sufficiently small to permit an attempt at

solving the problem before drastic changes occur. To improve the stability

* The experiments were carried out with the Burroughs 220 computer at
Cornell University, and the IBM 704 at the A.E.C. Applied Mathe-
matics Center at New York University.
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of the network,in all experiments shown here, the A-R connections are
reinforced, for each stimulus, before determining whether a correction should
be propagated back to the S-A network. Thus, S-A connections are changed

only if the system fails to correct an error at the A-R level,

In Figure 39, mean performances of a number of 20 A-unit
perceptrons are shown, in one case with 4 connections, and in a second
case with 50 connections to each A -unit. These perceptrons are small enough
so that in many cases we would expect no solution to exist to the horizontal/
vertical bar problem (which requires the classification of 40 stimuli with
only 20 A-units) were it not for the modifiable S-A network. Initial values
of S-A connections are again equal to 10, and thresholds are 2/ , where
/m = number of connections to each A-unit. Note that with 50 fixed connections
to each A-unit the performance is poorer than with only 4 connections, but that
with £ = .9, F, .5 and £ =./ , the performance overtakes the 4-connection
model. This is because with large numbers of § A connections, the per-
ceptron can effectively take its pick of whatever organization might be most
helpful, and can always reduce excess connections to zero value, while
with only a small number of connections at its disposal it is seriously limited
in its potentialities. With only 4 connections, variable S-A connections have

little effect on performance.

These experiments suggest that the best performance will

generally be obtained by taking 7, > £, > F, .
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An interesting application of the variable S-A system is in
pre-conditioning a perceptron for stimuli of a particular type (such as line
figures, or blob patterns) by giving it a number of discrimination tasks to
perform on typical material of the given type, and then trying to teach it a

new discrimination on the same kind of stimuli. Due to the prior adaptation

of the S-A system, it is to be expected that the learnirg curve for the final
discrimination task should show faster learning after the period of pre-
conditioning than if the same discrimination task had been attempted with

the original randomly organized S-A network. In other words, the S-A
network should become adapte.d to the stimuli of a particular kind of universe,
performing better on typical discrimination tasks involving "familiar' kinds
of stimuli than on tasks involving radically different or '"unfamiliar' kinds

of stimuli.
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14. SUMMARY OF THREE-LAYER SERIES-COUPLED SYSTEMS:

CAPABILITIES AND DEFICIENCIES

The three-layer series-coupled perceptron (S-+»A—-R perceptron)
is the least complicated topological organization which yields fully general
response-capabilities. The analysis presented in the preceding chapters

leads, in effect,to the following conclusion: With a suitable design and

training procedure, a three-layer series-coupled perceptron can be taught

to duplicate the performance of any finite autornaton. This means that if we

have a finite universe of potential input sequences ( 'Jl’ JZ’ ...y o, )and
a {inite set of possible response sequences ( ?@1, 9?2, ..., ®&_, ), then it is
possible to construct a minimal perceptron such that any response sequence,
& , can be associated with each pos.sible input sequence, Jé . In order
to do this with full generality, of cou;'se, a suitable spectrum of time delays,
T; » must be present, as indicated in Chapter 1l1.

Both the generality and the practical limitations of the above
statement should be emphasized. It is perfectly possible, in principle, to
teach a minimal perceptron to duplicte the performance of an arbitrary digital
computer. To do this, every possible sequence of coded instructions and data
must be represented as a stimulus sequence (one of the J; ) and the set of
output numbers generated by the computer as a response sequence (one of
the # - ). If the perceptron is large enough, it can then be trained, with
an error correction procedure, to make the appropriate association of input
and output sequences. But what the perceptron learns by this process is to

simulate the behavior of the digital computer; it does not acquire the
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computer's logic. If any one of the trillions of possible programs were
omitted from the training sequence, the perceptron would probably fail to |
perform correctly if tested on the omitted sequence. The failure to genera- |
lize, or to learn logical rules, in such a problem makes such an application

of these minimal perceptrons totally impractical.

For practical purpcses, we will limit our remarks to the
performance of these perceptrons in recognizing and reporting environmental

events. In this connection, the following capabilities have been established:

(1) A three-layer series-coupled perceptron can be

taught to associate an arbitrary coded output, or sequence of outputs, #; ,

to each stimulus, or stimulus sequence, t-f" , in a finite environment.

(2) The perceptron need not be explicitly designed for the
task which it is required to learn. The same network may be taught a

variety of alternative outputs, or codifications, of the same environment.

(3) The required training can be accomplished by means of
an arbitrary sequence of events from the specified environment, regardless
of the order or frequency with which they occur, provided each event

ultimately reoccurs in finite time.

(4) The training can be accomplished regardless of the
initial state of the perceptron's memory, and without specifying in detail
the changes which must take place in the state of the system (i.e., general

dynamic laws are sufficient to bring about the required adaptation).
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(5) A perceptron will tend to assign the same response to
any two stimuli or stimulus sequences, J‘- and Jd , which are close to
identity under temporal translation. By means of discrimination training,
however, it can be made to associate a different response to each such

stimulus.

With this kind of universality in the performance of the system,
we obviously cannot hope to find any new kinds of response capabilities in
more complex or sophisticated networks, which cannot be realized by

minimal perceptrons after suitable training. Nonetheless, the three-layer

series-coupled perceptron clearly falls far short of biological systems in
WsoTﬁ—éq{respects. The differences lie not in what the system can learn to do,
but rather in the speed, efficiency, economy, and reliability of learning or
adaptation. An S—+A->R perceptron can be taught to play a game, such as
checkers, only by teaching it what response to make inevery conceivable
situation; a biological system can anticipate most of this training by
learning the rules of the game. Or, similarly, an S»A-+R perceptron can
distinguish a circle from a triangle in the lower half of its retina only if it
has previously been trained with triangles and circles in the lower half of
its retina; it will not generalize from experience with similar forms in the
upper half of the field. In Nature, the enormous number of sensory situations
which comprise the potential universe (each situation, individually, having
exceedingly low probability of occurrence) makes the capabilities of
generalization, analysis, and abstraction absolutely essential for an
advanced organism, or recognition device, to function properly. Two main

ingredients of such performance are recognition of similarity and recogni-

tion of functional parts, or entities. The first of these is basic to generali-
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zation and induction, while the second is basic to analysis, the abstraction
of relations, and the reduction of complex situations to familiar terms.
Seen in this light, the principal deficiencies of these minimal-topology

perceptrons are:

(1) An excessively large system may be required.
(2) The learning time may be excessive.
(3) The system may be excessively dependent on external

evaluation (by an independent r.c.s.) during learning.

(4) The generalizing ability (inductive ability) is insuffi-

cient.

(5) Ability to separate essential parts in a complex

sensory field (analytic ability) is insufficient.

Point (1) is largely attributable to (5); the excessive size of
the perceptrons necessary to deal with complex environmental situations
is due largely to the necessity of having a characteristic set of A-units
representing every possible sensory field or sequence in its entirety. A
preliminary coding of the field in terms of its parts and relations would
greatly reduce the size of the system required .to describe a given universe
of situations. To take an extreme case, if a three-layer series-coupled
perceptron is required to produce as an output the coded representation of
the sum of a sequence of a million digits, it must be capable of representing

in its association system every possible sequence of a million digits
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{(presented either serially or simultaneously): 1010 possibilities in all.

On the other hand, a perceptron which could attend selectively to each

digit, form a partial sum, and then go on to the next digit, requires only 10
possible states: 107 to represent the possible values of the partial sum,
multiplied by a factor of ten to allow for each of the possible incoming digits.
Tigue second method is the one employed by a digital computer, or a man
adding a sequence of numbers. In the field of sensory pattern recognition,

similar conditions occur. The recognition of a sentence is made much

easier by breaking it into words, and the recognition of a scene is made

easier by analyzing it into objects and relations.

Similarly, the excessive learning time (point 2) can be largely
attributed to (4), the insufficient generalizing ability of the system. With
improved generalization, several examples should be sufficient to teach
the perceptron to recognize all members of a class of similar events,
whereas at present an unduly large sample is required in order to extend
the response over the class. The insufficient generalﬂizing capability has
been frequently pointed out in the preceding chapters, and is common to
all of the S»A~R perceptrons. Thus points (3), (4) and (5) appear to be

the primary deficiencies.

In connection with point (3), we note the failure of minimal
perceptrons to reach "useful' terminal states under R-controlled
reinforcement procedures, except under exceptional environmental and
organizational canditions. This means that the reinforcement control
system must itself have a great deal of information about the environment,

and must generally know, or have built into it, the precise discrimination
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or response functiors which the perceptron is supposed to learn. Thus the
r.c.s. must either be a free agent (e.g., a human trainer) or else some
kind of homunculus within the same physical system as the perceptron. It
has been noted that a perceptron can improve over the performance of the
r.c.s. in some cases (Section 8.1.4) but the functioning of the r.c.s. still
seems to be rather remote from what might be expected of a biological
motivating system. By using a random-sign correction procedure, the
information required from the r.c.s. is minimized; with such a procedure,
the possible outputs of the r.c.s. can beinterpreted to mean ""hold steady"
or ''change', while with a directed correction procedure the three alterna-
tives "hold steady', "increase values', or ''decrease values' are all
required. But the efficiency of a system employing the randomized
procedure is greatly reduced (c.f., Figure 19) and the only hope for such
systems seems to be in a ''majority rule' procedure, which increases the

size and complexity of the total organization.

If a system could be contrived which would guarantee
generalization of a response from one stimulus of a class to all other
stimuli of that class, an r.c.s. which employs the "trial-and-error"
process of the random-sign procedure might become practical, and a
simple motivation system which senses only the suitability or unsuitability
of the p.resent response or state of the organism might be substituted for
the more complicated r.c.s. assumed for most of the preceding experi-
ments. In Part III, it will be shown that multi-layer and cross-coupled
perceptrons are capable of providing just this sort of generalizing capability,
and, moreover, that this capability may be ''self-organizing" under

reasonable environmental conditions. That is to say, R- controlled systems
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can learn to form reasonable classes on the basis of a similarity criterion,
provided theré is some support for this organization from the environment.
The required support takes the form of a '"continuity constraint'', which says,
in effect, that stimuli do not occur as momentary flashes, but are more
likely to persist for a time, during which they undergo a series of move-
ments or transformations. It will be seenthat such a sequential organization
provides sufficient information to enable a multi-layer or cross-coupled
perceptron to abstract a concept of similarity which can then be employed

to obtain immediate generalization in later situations.

The improvements which have been demonstrated to date in
multi-layer and cross-coupled perceptrons will be seen to be primarily
in the [ield of generalization phenomena, and their main virtue is in
reducing the learning time of a perceptron. Some reductions in size
requirements have also been demonstrated, and the dependence on
external evaluation of performance is largely eliminated. Thus points (1)
through (4), in the list of criticisms of minimal perceptrons can be largely
or entirely eliminated with a multi-layer or cross-coupled topology.
Point {5), however, remains the least understood of the current problems.,
While there is some indication that perceptrons of the types to be consi-
dered in Part III may have some analyzing ability (for example, they can
isolate contours from solid figures, and may possibly learn to suppress
the partial response of the association system to irrelevant aspects of the
stimulus field) it is not yet possible to say whether such systems are really
sufficient to meet the challenge of point (5), or not. The psychological

problems of figure-ground organization, recognition of relations, and
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""cognitive set' are all involved here. It is likely that '"back-coupled
perceptrons'’, in which R-units or deep association layers feed back to
more superficial layers, may be necessary to deal with these problems.

Several possible approaches will be considered in Part IV, which deals

with current problems, and attempts to establish directions for future

study.

-310-




PART III

MULTI-LAYER AND CROSS-COUPLED PERCEPTRONS




15. MULTI-LAYER PERCEPTRONS WITH FIXED PRETERMINAL

NETWORKS y

The perceptrons considered in Part II have all consisted
of three "layers' of signal generating elements: a sensory layer, a single
layer of association units, and a layer of R -units (containing only a single
unit in the case of simple perceptrons). A perceptron with additional layers

of A -units between S and R-units will be called a multi-layer system. Thus

the network diagram:

represents a three-layer cross coupled system, since all A-units are at
least the same logical distance from the sensory units (see Definition 18,

Chapter 4). The three-layer structure of the second diagram can be made

clearer if it is drawn in the form:
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which is topologically identical to the preceding network. Cross-

coupled systems will be considered in detail in the following chapters.

It has been demonstrated that three-layer, series coupled
perceptrons are capable of learning any type of classification, or
associating any responses to stimuli or to sequences of stimuli, that
might possibly be required. Therefore, if a multi-layer topology is to
offer any functional advantages, it will not be in the form of new kinds of
responses to stimuli (since any such response can be achieved with a
three-layer system) but rather in increased efficiency in the acquisition
of such responses. It can, in fact, be demonstrated that the adaptability,
or ease of acquisition of responses, may be greatly improved with a
suitable multi-layer topology. The most striking improveme.nts are to
be found in the generalizing ability of such networks -- an ability to give
appropria‘te responses to stimuli for which they have not been taught. It
has been seen that this "inductive' or generalizing capability is present
only in rudimentary form in three-layer sefies-coup]ed systems. Some
multi-layer systems also show improvements in sensitivity to differences
between highly similar stimuli, making such discriminations easier to

learn, as will be seen in Section 15.1.
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In the following sections, we will first consider systems in
which all connections other than connections to R-units have fixed values,
only the R-unit input connections being reinforced. The connections to the

R-units will be called terminal connections, all other connections (from S

to A-units, and A-units to other A-units) being called preterminal connections.

It will be seen in Section 15.2 that the most interesting effects which can be
obtained by such systems depend on special constraints in the organization of
the preterminal network. The following chapter will therefore be devoted to
the examination of dynamic rules by which the preterminal connections

between layers of A-units can be modified, so as to yield the required organi-
zations as a result of the system's adaptive functioning, in a suitably organized

environment.

The analysis cf multi-layer systems is of interest not only in its
own right, but also because it introduces many of the problems and formal
techniques of analysis which will be encountered in the following chapters on
cross-coupled systems, with feed-back loops within the network. In fact, it
is found that with a suitable transformation, many 'closed-loop' cross-
coupled systems can be represented by an equivalent "open-loop' multi-

layer system.
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15.1  Multi-layer Binomial and Poisson Models

The most straightforward extension of our previous models to
a multi-layer topology is to assume that each A-unit in the first association
layer is assigned an origin point configuration in the retina, or sensory

layer, chosen independently for each A-unit, as before. Each A-unit in the

second layer (designated A(Z)) is similarly assigned an origin point configu-

(1)

layer, independently for each such A-unit. In general,

k)

ration in the A
every A -unit in the A( layer is independently assigned an origin point
configuration from an appropriate distribution (binomial or Poisson model),
the connections originating from the A(k—l) layer. All connections from one
A-layer to the next are assumed to be fixed in value, the final A-layer sending
variable-valued connections to the R-units. In order to analyze the perform-
ance of such a perceptron, it is sufficient to determine the Q-functions for

the A-units of the last layer before the R-unit, since, given these Q-functions,

we can then apply the same equations and analysis which were employed

(1)
in Fart II, for three-layer perceptrons. The notation @;: will be
used to denote the Q-functions for A-units in the first layer (which are
‘ : ré)
identical with the Q-functions discussed in Chapter 6), and &;:  , to

. - ,th
denote Q-functions for units in the4 layer.

Even in the simplest case, of a four layer perceptron, the

-

. . . . . 2) ]
combinatorial analysis required for a rigorous statement of J functions

is awe-inspiring. A special case, in which all inter-layer connections are

)

inhibitory, and the thresholds of all /1(2 units are zero, has been
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analyzed by Joseph (Ref. 41), and the reader is referred to his contri-
bution for the detailed considerations. The basic difficulty stems from
the fact that a second layer Q-function, such as Q;T} depends on the
distribution of the numbers of A-units in the first layer which respond
to 5. alone, 5“- alone, and jointly to j; and L'J- . The expected
values of these numbers are obtainable from the QW functions in a

straightforward manner, but the non-central moments of the distributions

enter into the analysis in such a way that it becomes unduly complicated.

A practical solution is obtained by assuming that the numbers

of A-units in the lst, 2nd,... i—lth layers (designated by

(1 4 (e 1) P .
Ny s Ny 'y ey 1, ‘ Jare all very large, or infinite. In this case,

the proportion of active units in each layer in response to 5; will be
equal to 5 , and the expected values of all set-intersections can be
employed in the analysis. In this case, the equations of Chapter 6 can

: s . . (e-1)
be employed without modification to compute 7J; / ,, by using Q[l

t
n.('l"/)

in place of the stimulus area, £ , o

; in place of the intersection

, etc. The error introduced by assuming infinite v, for the pre-

terminal layers will be slight, as long as the actual /v, is reasonably large.

The addition of extra A-unit layers can have one of several
interesting effects, depending upon the parameters x , ¢ , and &
(or » , ¥y ,and 4 ina Poisson model) for each layer. The special
case of inhibitory connections and zero thresholds was investigated by
Joseph (Ref. 41), who finds that by optimizing the number of input
connections to each layer, so as to achieve highest probability of correct
approaches a constant as the number of layers increases,

recognition, ¥
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regardless of the size of the stimuli or the dichotomy which the perceptron

: y . 2
is required to learn. At the same time, (.- approaches Q; O[ja@

L.J
approaches Q;j , etc. In effect, this represents a condition in which, 'in
the terminal association layer, a statistically independent set of A-units

responds to each stimulus in the environment. The consequence is that

all discriminations become equally easy. Specifically, it was found that

L) .
%) for 100 A-units in the terminal layer approaches
¢ 4y y

1.941 as the number of layers is increased, with an environment of 40

the ratio

stimuli. A comparison with Table 3, in Chapter 7, shows that this
performance is less than would be achieved with a three-layer perceptron
for the task of discriminating horizontal from vertical bars, but it is
considerably better than the performance of a three-layer perceptron

on a more difficult task, such as the odd-even bar discrimination illustrated
in Table 4. Thus the addition of extra association layers can be used to
improve discrimination in difficult problems, but only at the cost of reduced
generalizing ability, since two adjacent stimuli with a large intersection are
now no more closely related (in the - ! layer) than two totally disjoint

stimuli.

In Joseph's model, with all inhibitory connections, the above
results are -optained only by optimizing the number of connections to each
new layer of A-units. If, instead of carrying out this optimization, a fixed
number of connections is assumed for all A-units in the system, the
perceptron will be unstable, and will tend to develop oscillations such that
alternate A-layers are totally "on" or totally "off", making all discrimi-

nation-impossible. Moreover, it is to be expected that a model which has
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been optimized for one environment, with a given size of stimuli, will be
unstable in a different environment, with a slightly different size of stimuli.
Iﬁ. more practical cases, a mixture of excitatory and inhibitory connections
must be used, with thresholds greater than zero, in order to guarantee
stability and convergence of () for a range of environmental variations.
Q,'M)

Clearly, if x <y +6 , will not go to 1 as # increases. If x =y

a suitable choice of @ >0 will generally guarantee, as well, that @;

will not go to zero. From Figure 7(b), for example, it is clear that if

A= RN » and 6 = /| , an equilibrium should occur at about (; =.37 ,
since at this point 0‘-(6) = Q; =0 ¥ @ (£-1) should rise above .37,

we will have C‘-(’é)< Q; (4-1) , while if Q;(’é_ ) falls below .37 we

will have C)[(’é‘; > KJ: e 0) .* If we increase the amount of inhibition by

making + - 7, ¢ - 7 , then (from the same Figure) we find that the
equilibrium value of 9. 1is reduced to .14. If the inhibition is increased
still further (e.g., to -/, v/-» Y . , as in the bottom curve of Fig. 7b)
the equilibrium value of 7/: is zero, and no matter how large a stimulus

is presented, activity will die away entirely in the '"deeper' association

layers.

* This observation will generally not be valid for a small perceptron,_

where the actual level of activity may go to zero in one of the layers,

. . . . I +
due to random variations in the network. In this case, ’3;'5) will be
.. (&)
zero for all subsequent layers. Thus, for a finite system, Q; g D
N
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15.2  The Concept of Similarity-Generalization

So far, the add:tion of extra association layers has had no
important effect beyond the sharpening of the discriminative acuity of the
perceptron, generally counterbalanced by a loss in the generalizing capa-
bility of the system. In the next section, we will consider a four-layer
perceptron with special constraints in the organization of the connections
to the A -units, such that the system tends, spontaneously, to generalize
a response associated to a given stimulus pattern to all ""similar' stimuli,
regardless of their location in the retinal field. In the following chapter, it
will be shown that such constraints need not be built into the system ab initio,

but can arise through a spontaneous adaptation process (without any inter-

vention by the r.c.s.) if some simple dynamic laws are introduced. In all

of these systems, the concept of ""similarity'" is of fundamental importance.

The term "similarity" has been used in a number of different
ways, some of them well-defined, as in "two triangles are similar'', some
relatively vague and ambiguous, as in 'two faces are similar' or "two ideas
are similar'. For present purposes, we have need of a concept which will
cover the range of relationships which might make two objects appear
'""'similar' to a perceiving observer, but which will still permit exact
definition for purposes of analysis. We must also distinguish between
the ""objective similarity" of objects in space, the similarity of stimuli
on the retina, and the "subjective similarity' which the observer recognizes
and reports. While the concepts proposed here do not cover all of the
possible meanings of "similarity'" in psychology, they are sufficient to
permit the design of a number of perceptual experiments related to the

similarity problem.
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15.2.1  Similarity Classes

We will first consider a definition of similarity which is

applicable to the classification of stimuli. From this point of view, two

stimuli either are similar or they are not; there are no intermediate degrees
of similarity. In the following section, a quantitative definition which per-
mits a multidimensionai ordering of objects or stimuli according to their

similarity will be considered.

For present purposes, the only constraints which will be placed
on the logical nature of the similarity relation are that it should be

symmetric and reflexive; that is, if A sim B, then B sim A, and A is

It is not required that the relation of similarity

always similar to itself.

should be transitive; that is, A sim B and B 5_12_1 C does not imply A _s_1@ C,
except under very special conditions, as will be seen below. There are
clearly a large number of possible relations which meet the logical conditions
for a similarity relation. For example, equality, geometrical congruence,
equality of area, and topological equivalence are all admissible possibilities.
Thus, in specifying the similarity of two stimuli the notation A sim B| X

will be used, where # is a particular relation, meeting the conditions

of symmetry and reflexivity.

The set of stimuli which are similar under a given relation

will be said to form a similarity class under that relation. For example,

if # is defined as the relation of similarity under a rotation group, then

A sim B| +.  means that A is a rotated image of B, and B is a rotated

image of A.




In perceptual problems, a particular kind of similarity class

is of particular importance. This will be called a projective similarity

class, and is defined as follows. Let the sensory points of a perceptron

be embedded in an r-dimensional sensory manifold, o . Let o be

embedded in an 7+ £ dimensional world manifold, 72 . An object in 92
S
is defined as any set of points in %2 .  Let (1 be a set of admissible

objects in 72 . Let & be any transformation group in 72 . Leta
projection 77 be defined as an operation which maps every point in 92
intoat most one point in »f . Then A sim leb, o, 1, 77 means
that stimuli A and B are both /7 -projections onto the sensory points in
«/ of transforms under £ of the same object in (1

A few moments reflection should show that this encompasses
most of the cases in which we say that two stimuli are perceptually
""equivalent'; for example, any group of rigid movements of an object in
3-space will yield a projective similarity class on a two-dimensional
retina. Note that this similarity relation is not generally transitive. For
example, if we let % be the group of rigid motions in 3-space, and let
» = 2 , then the similarity classes generated by a flat cut-out of a
square in 92 , and by a cube in %7 (with orthogonal projection onto the
retina) are related by the Venn diagram:

— T
f/fgcmps CoEl
N\ PROJECTICNS PRCJECTIONS //

am___\;'///\ \»‘—/'

& The term '"'object" is used in much the same sense as ''distal stimulus"
in psychology. Our use of the term .'"stimulus' always signifies a
"proximal stimulus' unless otherwise specified.
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where the intersection includes all cases where the square and a face of
the cube are both parallel to the retinal surface (assuming .J to be
Euclidean, which it is not in a vertebrate eye). A tilted square will be
projected as a parallelogram, whereas a tilted cube is projected either
as a rectangle, pentagon, or hexagon, so that the classes, although they

intersect, are not equivalent.

For the special case in which the points of an object and all of
its transforms in 92 can be placed in one-to-one correspondence with the
S-points in « , the relation of projective similarity will be transitive.
This includes the case in which %2 and ./ are of the same dimensionality
and coextensive, objects and transforms consisting only of sensory points in
2. . Most stimulu$ classes consideved in experiments up to this point have
been interpretable in this fashion. Alternatively, “722 might have a higher
dimensionality than « , but the group - may be limited to motions
parallel to the surface of «/ . Here again, with a suitable choice of 5,

a transitive similarity rclation can be obtained.

The case of greatest psychological interest is that of a three-
dimensional world-manifold, 7 , and a two-dimensional sensory manifold,
f , where ¥/ is the group of rigid motions and dilatations in 92 . A
perceptron which generalizes strongly between any two members of a
similarity class defined by such a relation, and generalizes weakly between
stimuli which are not in the same similarity class, will duplicate a large
fraction of the perceptual behavior of a biological organism, in the visual

o

*
domain.

% A consideration of some of the projection operations which apply to
this problem can be found in Gibson, Olum, and Rosenblatt, Ref. 27.
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15.2.2 Measurement of Similarity, Objective and Subjective

Let & be a Lie ._group*' (of dimension 7 ) of transformations
of the manifold 92 . Let B be a canonical system of coordinates defined in
the Euclidean # -space, E£7, such that every system of equations
9;(t) = a;t (where g; is the [ th coordinate of ¢ in B) gives a one-

parameter subgroup ¢(¢) . Then the distance d(0,9) for any g€ (&)

(9:(9/7 92)"‘) g")) ngivenby

/ 2
r_/‘/c),j,) = ZgL

We then define the similarity measure 4 (X,Y/|4, 6 for the objects /

and Y with respect to £ and B as

‘et d 17
X, 7| &, 8 = FdlDg) (15.1)
7€l
where [ {q:/ = 9V ., yéf;‘/ (That is, /7 1is the set of all trans-

formations in 7 which will transform the object Y into the object X .)

Note that this measure is applicable only to objects in 72

which are similar under « ; it is not applicable to stimuli unless of

is coextensive with 77 . Consequently, the measure « will be called

the objective similarity measure with respect to 7 and B. This

measure represents the length of a sort of "shortest path'" by which V¥

* Readers who are unfamiliar with the theory of Lie-groups will find a
useful discussion of this subject in Pontrjagin (Ref. 111).
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can be contihuously transformed into X , by means of transformations
of the group #7 . The choice of the basis, £ , determines the relative
weighting attached to various subgroups of %/ . For example, if < is
the group of translations in %2 , then « can be made proportional to the

length of the displacement vector which would carry Y into .

Let us also define the subjective similarity measure with

respect to a perceptron, # , aresponse unit, # , and a projection

operator /7 , by

f

LT T o E N, (A T (P E (15.2)
where .« is the value of .- for the stimuli corresponding to the
objects » and ! (under the projection // ) measured in the source set
of the response unit « . For an (< -system, and stimuli of fixed size,

“. 7 is proportional to the generalization coefficient 9ry o for the
response / ., For two identical stimuli, /", { . If the value
of . ""/,/" 1is a monotonic function of the objective similarity of the
objects / and Y , we would expect the response s to generalize most
strongly to highly ''similar' objects, and most weakly to dissimilar objects.
Over any given subgroup of transformations of an object in 2 , this
induces a ''generalization gradient' equivalent to the use of the term in

experimental psychology.

A perceptron which is to simulate perceptual performance
must have or acquire a close correlation between the subjective and

objective similarities of objects in physical space, under the group of
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rigid motions and some kinds of cintinuous deformation. A perceptron in

which such a correlation exists is said to be capable of similarity generali-

zation. Similarity generalization implies that the perceptron not only tends
to generalize to similar objects, but retains its ability to respond differen-
tially to dissimilar objects. The demonstration of such a capability will be
our main concern for the remainder of this chapter and the following four

chapters.

15.3 Four-Layer Systems with Intrinsic Similarity Generalization

15.3.1 Perceptron Organization

The four-layer perceptrons to be analyzed have fixed connections
except for the terminal A to R-unit connections, and a topology which is
illustrated in Figure 40. S, A, and R-units are all assumed to be of the
simple variety, resembling those of an elementa;;y perceptron. The
special features of this system (which might be called a "similarity-

constrained perceptron') are the following:

] .
(1) Each A unit has a threshold 6 , x excitatory and
y inhibitory input connections, and a single output connection to one of the
z) . '
A ( _units.
(<) . . .
(2) Each A unit receives connections from a source

(1
set of mA' "’ units, and has a threshold equal to 1.
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Figure 40 ORGANIZATION OF A SIMILARITY-CONSTRAINED PERCEPTRON (x - 2, y=: I,
m = 3). o - TRANSLATION GROUP IN TOROIDAL RETINA.
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/ 2
(3) The values of all connections from A() to A( )
units are equal to +1.
(1) . : "
(4) All A units in the source set of a given A4

unit have origin point configurations which are members of a similarity

class, under some similarity relation X

The subsequent discussion will be limited to the special case
in which the similarity relation X is equivalent to similarity under a

o,

transformation group, & , in the senscory space of the perceptron.' This
means that, when an origin configuration has been picked for one of the A“)
units connected to a given 4(2. unit, the remaining 772-/ Am units
connected to the same A(z) unit must have origin configurations which

are transforms under & of the first configuration selected. This is
illustrated in Fig. 40 for a case in which 22 =J , and the transformation

group is the group of horizontal and vertical translations on the retina.

In the model to be analyzed, it is assumed that a single template configuration

‘5

is chosen at random for each + ~~ unit, and the »» origin configurations
actually assigned to the A”) units are obtained by selecting 7 transform-
ations at random, without replacement, from the group 7 . This yields
the auxiliary condition that no two A(’) units in the same source set have

identical origin point configurations.

* In the case considered here, the world manifold %2 and the sensory
space J are taken to be coextensive, with a one-to-one correspondence
between objects in % and stimuli in o .
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15.3.2 Analysis

To begin with, we will attempt to provide an intuitive basis
for understanding the functioning of the similarity-constrained perceptron.
At one extreme, if %2 - / , note that the system becomes functionally
equivalent to an elementary perceptron of the binomial variety, with A-units

7)
having the same parameters as the /1( units in the 4-layer model. At

the other extreme, where  1is equal to the order of the transformation

. (1) - .
group, there is one A unit in each source set for every possible trans-

/ ”
form of the '"template configuration', Now if one of the A() units whose
origin configuration 1is «w) responds to a stimulus S, , any transform
/1
s

7(:,) will necessarily activate the A" unit whose origin configuration

. . . f .

is the transform 7 () . Since both of these A( ) units are connected
(2) . . . . )

to the same A4 ~/ unit, this unit will respond both to SX and T(Gx,) ,

/
since its threshold is 1, and the values of the connections from 4 & to

. . ) (2, .
A" units are fixed at 1. Thus we have the rule that any A unit

which responds to a stimulus >, will also respond to all transforms T(:)"Y)

under the group ' . Alternatively, we could state that if ~, sim §y|»f7 g
2) o . . q

and an A unit 2. responds to 5, , then this unit will also respond to

-

Y
() . . .

group, the threshold of the A units is A = number of excitatory

Next suppbse that in addition to making m» equal to the order of the

origins = area of the stimuli, and the number of inhibitory origins is
(f . .

equal to the complementary area, so that an A ) unit will respond to

/2\

’

only one stimulus. We then have an ideal situativn, in which an A4 unit
responds to all the members of a given similarity class, and only to

members of that similarity class. Under these conditions, if we show the
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perceptron a stimulus, say a square, and associate a response to that
square, this response will immediately generalize perfectly to all
transforms of the square under the group & , and will not generalize at

all to any stimulus which is not a transform of the square under ./

The conditions considered above, where m 1is equal to the
order of the group, and each 4 R unit responds to only one possible
stimulus, are impractical in the extreme, for a retina of reasonable
size. It should be clear from the above arguments, however, that even
with smaller values of s» (so long as /m ~ /) and lower thresholds, a bias
will exist for an AU) unit to respond to similar stimuli, rather than
dissimilar stimuli, under the group »Z . We now pass on to a quantitative
analysis of the performance of this system, first for an environment of
random ''salt-and-pepper’ stimuli, and then for an environment of square

stimuli.

The performance of a four-layer perceptron of the type under
consideration can be obtained from preceding analyses of elementary per-
ceptrons if we know the G-matrix or the Q-functions of the A4 (2)~units. The
expected performance of the system (or the actual performance of a very

. . : s (2) .
large system) is entirely determined by the functions Q;. , i.e., the

probability that a second-layer A-unit will respond hothto 5; and to jJ-
We will consider the case of a perceptron with A, sensory points, and
a universe of random dot-stimuli, each consisting of ANy - n; sensory

points chosen at random from a uniform distribution. Let 7 be any

transformation in & , such that the measure of the set of fixed points
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under the transformation is zero. We will use the notation S;’ to

denote the transform 7(5;) , and S:* to denote some other transform
r'(s.), (r*# r) . With this notation, Q(Z) is the probability that

an A® unit responds to S; and to 7(S;) , and QL(‘Z/' is the probability

that it responds to 5; and to Tx(_?;)

First of all, we have

(2) (2) (2)
o= Q.70

G G B (15.3)

(2) (2
where Q..; = conditional probability that an A : unit responds to 5;’

given that it responds to 5; . For the first factor of this expression, we

have the close approximation

'2) o).
@ 2 /-(/_Q‘. )

i

(15.4)

This approximation assumes that the » Am units connected to an A(Z) unit
all have an independent chance of responding to stimulus 5. . This will be
approximately true if 9 << n, for the A"I’) units. In this case, since the
stimuli consist of random point configurations, the knowledge that an origin
point of the first A(U unit falls on an active S-point still leaves n, -/
possible S-points in the same stimulus, any one of which might coincide
with the transform of the origin point for one of the other A(/) units. In
the range of parametric conditions with which we are generally concerned,

equation (15.4) approaches a perfect equality.
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For the second factor in (15.3) we have the approximation

(
(which is accurate for small Q;"’) )

(2) m-1 m -/ (1) 7
Ql..rll' - b * (/ - -/ /'(/—0‘./|[-t)
“ | (15.5)

where @ is the order of the group & . The first term of this

m-—1

expression, o7 ¢ is the probability that one of the m-/ Am units,
other than the one which is known to have responded to 5; , has an origin
configuration which is a 7 -transform ot *he configuration of the "known"
A-unit. There are -/ non-identical possibilities that this transform is
present, and -/ transforms from which they are chosen. If this condition

is met, then the 4 unit must certainly respond to 7{5;) . If this

condition is not met, with probability /- —— , it is still possible that one

7 -
() (e)= 1
/
of the 4 units responds to 7(5:) , and this probability is given by the
(1
last term of the above expression. Here Oi'if' » 1s the probability that an

(1, : .
A unit, which is known to respond to some transform f“(Sl') will also

respond to ;- . Since T~ may be any transformation (including the

'

: : . ! :
identity) so long as it is not equal to 7 , all of the m A( / units are
equally good candidates for such a response. Specifically, for the case

under consideration,

2

(1) = S , 7))
G[.,i[.r L SICYON PR /)‘,) EC/t.,lI.x

nL:U

It

(15.6)
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where = the number of common sensory points in 5;” and 5, ,

with probability

/1 Pe s 78~
Pin.) _(n[);o (1- %)
L = '74_,,/_
Ny~ 1 (15.7)

Note that the probability » that a point in 5 is in the common area is
based on A, -/ possible locations, since it cannot occupy the location of its
transform in N however, there are s/, -/ other points in S whose
locations it might occupy. The only quantity which we still lack is

‘1)
C;v;* r.) which is given by

o viren (ng) o (C)

7 ., —
VT o B —
B [ RN R X

=

where < {C) is computed from Equation (6.5) with C - n. /N,

Substituting, we have

v . 1, '
O”} / 2 ’/’7,,;) /,‘A—/>”‘// Ny~ T O /’)Cj!
e 0. \ " (\ Ny-1 ( N.-1 YU\ n, _J
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Note that as A, , the number of retinal points, goes to infinity, (with

Ng ‘N constant) this quantity approaches

Qi (R?)
Q:

which is equal to @Q: for the binomial model. At the same time, the first
term of (15.5) goes to zero if /» remains finite and the order of the group
increases with the number of possible retinal locations of the stimulus.

Thus, for an infinite retina and a transformation group of infinite order,

we have
/2) "{)‘ff"
PRI -(1- 00) (15.9)
and
) o (1) 7] ?
Yo F={=00 (15.10)

2

which is identical to the expression for ()"(; for a pair of random,

unrelated stimuli. Thus, with an infinite retina, no additional generalization
is to be expected from a random stimulus to its transform under the conditions
assumed above. For a finite retina, however, (or for a finite group <& )
we have the inequality

(2) (2}

e > (). .
Qll, jt‘/

due to the effect of the first term in equation (15.5).
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Let us now turn to a modification of the above problem, in
which the environment consists of square patterns with edges alligned
in a square (toroidal) retina, and the group »/ consists of all possible
translations. In particular, we will take the transformation 7 to be
a lateral translation by ha)f the width of the retina. The notation J5;-
will be used for 7(S;) , and T will be taken to mean any transformation
in & not equal to 7 and not equal to the identify transformation. For
convenience, we restrict the area of the stimuli so that # £ .25. This

(1)

guarantees that 5. and 5;’ are always disjoint patterns. @, is

again assumed to be small. In this case we have, in place of (15.5)

(2) - ! p m -/ , (1) / (r)\ (1) (1)
Qoo 7 e /){/— /—Oi’i) E'./'Qt"lf//(/_Oi“"z)“'(/_Q‘./"'rn-/)}

) - %)

where the expectation is with respect to selections of transformations

such that 777, ,
To avoid the computation of this expectation, we make the

further approximation that the expectation of the product of the abcve

sequence of Q-functions is equal to the product of the expected values of

the Q-functions. Now it can be shown that for any distribution of ;. ,
/

[t

ST -5, £ TTE(-9) - TT(1-EQ)

It follows from this that the approximation which we now propose to make
, . N oo (2) . .
will be a conservative one, yielding values of Q1. which are slightly

smaller than they should be. With this approximation, we now have:

-335-




(2) m - m- m-t (/)
T - — =@ . IS
& K @ -1 i (/ w=1 [ i ) ( (0)>

1) . "
since the "known'' A( unit which responds to 5; has the conditional

(15.11)

probability
(1} :; -(0)
k\W /| (./'7) b é)"_____
of responding to the disjoint transform 5 . The expression for
//)
G e is again given by (15.6), only the probability F~(n.) is different

t 4

from the random stimulus case. A general equation for #(n,) will not be
developed here, for a finite retina; in par.ticulhar cases, it is obtained by
counting all of the possible ways in which a square and its translate can
intersect to yield »~. common points. Some numerical examples will be
considered in the following section. Note that the modification from

Equation (15.5) to (15.11) will have the effect of tending to diminish the

value of J‘-,-:’. for small values of ~ , so that for m =/ the generalization

to a disjoint square will always be less than the generalization from a

square to a random stimulus of the same area, which is still given by

("’ m) J (15.12)
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If we go to the limit of an infinite retina, (and infinite trans-
formation group) with the environment of square stimuli just considered,
the results differ considerably from the random stimulus case. The
difference is due to the distribution of the common area, ( , which, in "~
the case of the random stimuli, went to Pz with probability 1. In the
case of randomly placed square stimuli, the probability of a zero inter-

section in an infinite retina is given by
P(C=0)=1-—5— (15.13)

where # = length of edge of square,

r = width of retina (» = ¢4

The probability of <2 £ 9 will be 4 #“ times the area under the

hyperbola = ; » from y -7 to 4 . Specifically,

R i’z_ [%(f‘)J (15.14)
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1
Thus, for a square stimulus of area R in a retina of area /(R 4 7)

we have

R
(1) / . 0 "
o == g”t’ma P(C) Q;;(C)dC+(1-4R) Q;; (0)
t e
.| i f'f ¥ ?J i, Y (1
= :' £ = :"). ."l.l I...J:t-'rL C’ QI.J. & & C[C+ (? P) G:IL.J. (9)
t b."‘

(15.15)

(2)
Substituting this in (15.11) yields an expression for &;/; for the infinite

(3
retina, and ;; can be computed by (15.3), as usual.

[

15.3.3 Examples

Figure 41 illustrates the behavior of a similarity-constrained
perceptron, as a function of s , for various combinations of retinal
size and types of stimuli. The transformation group, in each case,
consists of all horizontal and vertical translations in a square, toroidally
connected retina. The stimuli considered are a pair of independent
random-dot stimuli, 7, and J, , a square stimulus 5_1 , and the trans-

forms , where the transformation employed is a shift of

f)/ ’ "tzl
half the width of the retina. This guarantees that the square stimulus S?
is disjoint from its transform S?' . All stimuli have an area # equal

(1) )
to one fourth of the retina. The parameters of the A4 units are

A= y=4 , O=2
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(2)
J

Figure 4l
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TRANSLATIONS. S~ = S: DISPLACED BY HALF-WIDTH OF RETINA.
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The bottom solid curve provides a baseline, with which the
other conditions can be compared. This curve is identical for @,
(both stimuli random and independent), Gy (a random stimulus and its
transform) where A, 1is infinite, and qu_ (a square stimulus vs. a
random stimulus). In a small, finite retina however (specifically, with
V, = 36)a random stimulus will generalize more strongly to its
transform than to an independent random stimulus, for any m >/
This is shown by the upper of the two solid curves. The broken curves
illustrate the generalization from a square to its (disjoint) transform, both
for the 6 by 6 retina, and for the infinite retina. In both cases, we find
that the system generalizes more strongly to a random stimulus if r» isg
small, but that as r» 1s increased, the perceptron begins to generalize
more strongly to the disjoint transform than to a random, unrelated
stimulus. For the infinite retina, the cross-over occurs between rm = 4
and m = 5 . This means that for a 7 -system, with m = 5, YL'J' will
be positive from a square to any other square, and will be zero from a square
to a random dot stimulus. Increasing the threshold of the A/'” units will
reduce Q;-’/ for all curves, but will increase the relative bias towards

similar stimuli, and will shift the cross-over point further to the left for

the , curves.

Y1y
The difference in performance for squares as opposed to
random stimuli will tend to be characteristics of any coherent stimulus
patterns, provided the transformation group is one which preserves the
coherence, or compactness, of the stimuli. This may be puzzling to

some readers who recognize that under the connection rules employed
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in these perceptrons, there is nothing unique about topologically connected,
or continuous regions, which would affect the perceptron's ability to
recognize them in any different way than disconnected regions. It is,

after all, only the set of points to which connections happen to be made
which determines the response of a perceptron, and if every S-unit were
randomly interchanged with some other S-unit, a corresponding change
being induced in the stimulus environment, the performance of the
perceptron should not be affected at all. This will indeed be true,

provided any transformation group employed in the first perceptron is

replaced by a new transformation group corresponding to the rearranged

retina. The essential feature of coherent stimuli with a group of coherence-

preserving transformations is that the probability distribution of stimulus -
intersections does not concentrate at the expected value of the intersection,
as M. and the order of the group become infinite. This permits a
similarity bias to be maintained for such stimuli which cannot be
maintained for random stimuli. Any group generated by a permutation
operation on the points of the retina will have the same property, provided
the same permutation operation is applied to the stimuli. Another way

of looking at the problem is to note that with random stimuli, a sensory origin
point which is close to a stimulus point, but does not coincide with it
exactly, has a probability of being activated no greater than that of any
other origin-point. With coherent stimuli, on the other hand, an origin-

point which is close to a stimulus point has a greater probability of being

activated than one which is remote from the stimulus point. Thus, for
random stimuli, only a transformed origin configuration which corres-

ponds exactly to the transformation 7 will help in generalizing {rom
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to 7(S) . For coherent stimuli, it is sufficient that the transformed

origin points should be in the neighborhood of the required transform;

proximity to the required transformation is sufficient to increase the

probability of being activated by 7(S). .

Note that as »7 increases, the value of O.;J' tends to approach
unity for all curves in Fig. 41. This means that there will be a maximum
similarity bias at some finite value of » , beyond which the advantage of
similar over random stimuli will approach zero. By increasing the value
of 6 for the A”) units, the location of the maximum bias can be shifted

further to the right, until, with &8 - r»n, , the maximum will occur at

mo= ()

15.4  Laws of Similarity-Generalization in Perceptrons

The results obtained in the previous section illustrate a
number of effects which are found quite generally in perceptrons which
show a capability for similarity-generalization, regardless of whether this
capability is learned or intrinsic, and regardless of whether the perceptron
is series-coupled or cross-coupled, Additional evidence for these general
results will be found in subsequent chapters, and they appear to take on
the status of empirical laws, which have now been substantiated for a
rather wide variety of systems. Thesc laws can be tentatively stated as

follows:

* The effects noted here are directly analogous to those originally
predicted for cross-coupled systems in Ref. 85.
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(1) As the size of the retina increases, it becomes increasingly
difficult to recognize the similarity of two random-pattern stimuli under a
given transformation group, with a finite perceptron. With an infinite
retina (and transformation group of infinite order) the similarity bias for

random stimuli goes to zero.

(2) The similarity-bias for coherent stimuli, under a
coherence-preserving transformation group, will generally be stronger
than for random stimuli, and will not go to zero even for an infinite retina

and transformation group of infinite order.

(3) The similarity bias of a perceptron can be increased
by raising the threshold of its A-units or by increasing the number of
connections to terminal A-units (i.e., generalization will be limited
increasingly to the members of a similarity class, as the threshold or

number of pre-terminal units is increased).

(4) Generalization to disjoint transforms of a stimulus
may be less than generalization to independent random patterns, for a
perceptron with weak similarity bias,; generalization to disjoint transforms
can be made to exceed generalization to random stimuli, however, by an
increase in A -unit thresholds or by increasing the number of inputs to

the terminal A-units of the network.
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l6. FOUR-LAYER PERCEPTRONS WITH ADAPTIVE PRETERMINAL
NETWORKS

The physical universe, at a macroscopic level, is characterized
by the continuity of its transformations through time. Objects do not
suddenly appear out of nowhere, persist for an instant, and then vanish
into nothingness. Given an appropriate time-scale, all changes appear to
occur smoothly and progressively. Consequently, stimuli which are highly
similar under a continuous transformation group are more likely to occur in
close temporal succession than dissimilar stimuli. In this chapter, it will
be shown that an initially unbiased perceptron can take advantage of this
property of the physical environment to evolve a capability for similarity
generalization, without any intervention by an experimenter or reinforcement

control system.

The model which is presented here was developed jointly by
Block, Knight, and Rosenblatt, in the hopes that its analysis would assist
in the understanding of closely related problems which occur in cross-
coupled systems. The similarity between the performance of this sytem
and the performance of cross-coupled systems is most striking, as will
be seen in later chapters. The main effects of cross-coupling will be to
accelerate the adaptation process, and to make the system inherently
responsive to stimulus sequences, rather than momentary stimuli. The
presentation in the first parts of this chapter is essentially the same as

that of Block, Knight, and Rosenblatt (Ref. 7).
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16.1 Description of the Model

The perceptron to be analyzed is illustrated in Fig. 42. It is
(1
a four-layer series coupled system, with an equal number (N, ) of A !
/2 b

) ) (12}) ) ) .
units and A units. Each A4 unit receives a variable-valued

] g . e (2) ”
connection from each of the A4 units. In addition, each A unit

receives a fixed-value connection from one of the A units. For conve-
nience, the A”) and A(Z) units are placed in one-to-one correspondence,
with the fixed connection to each A'fz" unit originating from its '"'mate'" in
the A4 7 layer. The threshold of the A"// units is 6’(/} , and the
threshold of the Au units is 9/2) . To simplify notation,‘ we will use
the symbol & to designate &' , unless otherwise indicated. The fixed
connections from A ! to A units all have values > A . For °

specificity, we assume that all of these fixed values are exactly equal to &

- . ‘d , 2) ,
The variable-valued connection from an A unit 2. toan A unit 2
has a value w;; * attime * . The symbol w«;, will be used to designate
7] g . . (2)
values of 4 to 4 connections, and v,. to designate values of A

to R-unit conhections. The input connections to the A”) units may be
organized according to any of the models (e.g., binomial or Poisson) which
were discussed in Part II. Signal transmission times, ”’,"'J‘ , are assumed
to be equal to zero, for all connections. It is assumed that stimuli occur at

times &, &> A . W AL etc.

The numbers of units need not be equal for systems of this type to
work; the constraint is introduced in order to simplify the analysis. It
is equally satisfactory to or ganize the perceptron with » variable

. ; . (2) .
valued connections and 1 fixed value connection to each A unit,
with origins chosen at random.
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The variable values v,;, are assumed to be initially equal to zero,

(1) . . . (2)
and change with time as follows: If unit a2, is active at time ¢ and a,
is active at 7+ At , then 1, , receives an increment (7-At) , and all
L(2)
connections Ly decay by a quantity (d‘-At)u;J- . The values of the A

to R-unit connections may be varied by any one of the usual reinforcement
rules. Note that under these rules, the values u,; will always be non-
negative, so that if the "mate' of a given /(2) unit is active, the Ak
unit will always be active. In the subsequent analysis, it will be shown
that with a suitable sequential organization of the environment, these
dynamic rules can lead to the development of a perceptron organization

closely analogous to that of the similarity-constrained perceptrons of the

previous chapter.

16.2  General Analysis

16.2.1 Development of the Steady -State Equation

As in the last chapter, our main concern will be to find the

values of , which will permit further analysis to proceed along the

t

lines employed for elementary perceptrons. Unlike the perceptrons of

’

. . .
Chapter 15, however, the values of .-- , and consequently the G-matrix

Y

of the perceptron, are stochastic variables, depending upon the prior

history of the system.

The set of A-units in the = layer responding to §;  will
1/
be denoted by At ;/; the set responding to both ., and SJ- is
(1) /) . g
A (5 r Al (5/-) . For a perceptron with a known connection
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if
scheme for the layer (or for a sufficiently large perceptron) the

fraction of 4 e units responding to both 5: and 5J~ will be Q[Z'/) s
and is equal to the number of elements in A(/)(S[) n A”)(SJ-) divided
by ' . These quantities are fixed for all time.

Let . ‘) denote the total input signal to the unit a:)
at time ¢ , in response to stimulus _; .* Then

N
)

/ H’l . , 7 c ,..
[Eay] 5 S f'; 1!,/‘,\[‘0,‘-('[‘)

rel

(16.1)

/ . . (1)
whare 1if _- activates Qg

0 otherwise

This represents the sum of the signal arriving at =, on its fixed

connection, and all of the signals arriving on the variable-valued connections

at time * . Let
(16.2)
/J _{' Z{ UI'.' Ll ']I' l'." (16.3)
Then
: J/,' /‘“’ff\
i ""I - A f.’/j v
“ (16. 4)

¢

The indices / , , , and #4 will be used throughout this chapter to
designate various stimuli, and the indices 7 and 4 will be used to
designate particular A-units.
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L7 . . SN 1)
Note that 4, is & or U depending on whether o, is in Al (5;)
or not; it is invariant with time. On the other hand, 7, L)(t) represents

T {.) .
the effect of the variable A to -~ connections.

Now suppose that at time 7, stimulus SJ- occurs, and at

time ¢, +/A/ stimulus Og occurs. Then the consequent change in w,

will be

., ey , .
Upy (g + 28E1 =iy, (b, Bt) = (0208, 2, (5:)0 00, (80 Be)j= (04t ) upy (£, + A2)

(16.5)
where 0 for » < ¥
\ .“ .
] for » - o
From (16.3) and (16.5) we get
‘\.'I N \ < p . " ﬁl * -
T | P 4T 14 Z c WU Y «/.,,A.'{Z'O+/_lt)Ja,~(Jl-)
I V. »
Hy, g
. . o —
X By . . Ty n ’ X
N T CAF Z’qi' T I c) - ”'A’/Llf‘/i fo*At)a'r(-g[)
T
Hence
/ N | ‘) )
Va 7\.._ ” : \\ p /, < '.-;'\_-’r \.\""(“'.1') (ZL+/\*
7 '_ AT AL

where, for brevity, the subscript .4 has been suppressed. It must be

remembered that 1 and r/ , in these equations, refer to any particular

) . (2)
A unit, )
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~ )
Now suppose the sequence of stimuli {j- , S ..., 5
PP 9 Jo 1Ty T UM f

occurs at the successive times ¢, t+At,..., t + MAt . In Equation (16.6)
wetake t, = temAt, |m=0,1,2, ., (M-D)], =/ & =dmi>

and obtain

7 e tmeine -2 v tmenyat)
Lrn+ - o+ Py =
2 (16.7)

=]

AL {0& (’,"'*')(’t +t(m+ )4t

() ()
My Qi = dde,7 (¢ (m+ 1)4t)

Summing on m from O to /-1 we get the change in Z/‘(‘) due to the

entire sequence of stimuli:

/‘\’,',
i) 1) . - R ) 4 o] (1
> e (MenAt) - 7 At Z < ‘/\/Or,?/Jt)(pLac Sl /t+.m+/)_“f)JO;J'm
rn =)
) 16.8
= ld-Alry /t+(/n-"/\t/f ( )
S
We now divide by A/Z* and let /f approach zero to obtain
/ () o=t ) ) ) |
" I AN \ f o)
‘. / Jmit | ) B - ,‘
4/1‘ Z) M ! k " "o (r/ (16.9)
rn

¥ An alternative treatment is possible in which difference equations are
carried throughout, rather than converting to a differential equation.
The true solution for ; ’ obtained from such an approach is a
fluctuating function, the local time-average of which corresponds to the
solution of the differential equation, which is obtained here. As long as
74 and 4 are sufficiently small, the differential equation, which is
somewhat easier to manage-ylelds a close approximation to the true

solution of the finite difference equation.
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Let /.4 be the number of times the stimulus pair Sj 54 occurs
in the given sequence Sk 5 92 gooog ‘(’l/,\., ; also, let {,-é = /;-)3/4// be the
average frequency of the pair S 54 - Then from (16.9) we get

o 1 r
A r - L (B //) ),
/[- -2% ; l@%?)ﬁgyhk HUGQ'—dJ ’t) (16.10)

- where s , as usual, represents the number of distinct stimulus patterns in

the environment. Defining the matrix ¢ = &/ , with elements

O
):-)
>

é =
we have from (16.10)
8 ' b
e 2: I I G () (16.11)

(! (n),
This gives us a non-linear system of differential equations for 4 (i),..., 7’ e
(i),

with initial conditions 7

If the frequencies /'/3:. vary with ¢ , then the coefficients

¢, are time-dependent, but in any case they are non-negative and

bounded; < is non-negative, monotone increasing in 7' , bounded and

continuous on the right. It will be assumed here that the (- are

constants (corresponding to fixed frequencies, 14, ).
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In preparation for discussing the solution of (16.11), consider

the equilibrium equation

o

77
" Na : (/)
P Al F oyt )
Py (l16.12)

/

This corresponds to a solution of (16.11) for the steady-state condition in
which the rate of gain (represented by the first term of 16.11) is exactly

counterbalanced by the rate of decay. But the system of equations (16.12)
may have more than one solution. However, we shall show that there is a

unique minimal solution (by which we mean a solution none of whose compo-
nents )’ / exceed the corresponding components of another solution); and
this minimal solution is obtained in a finite number (at most ~n ) of iterations
of (16.12), starting with all 7 EON on the right-hand side of the

equation, finding the new values of /""/) from (16.12), putting these back

into the right-hand side, and so on. That is, we take 7" -0 and

‘ me Z o) )
.- 2. _ . O . ; "
J / . &l

(16.13)

We shall prove first that this prdcess terminates in at most »

iterations. This can be seen from the following considerations. Since

the right-hand side of (16.13) is non-negative and /' ' £ , it follows

v
() 16 . o
that s, " =2 7, - Now since the right side of (16.13) is a non-
decreasing function of the ¢ 's, it follows that ;/'1_“' > /"/",....
(i) (i) 5 ') ” ) ) (/)
[nil >/, . Therefore, also /,‘J(ﬂ(d / /n(”) > f/)\//f“/)+ 2‘; ) ;

that is, successive () 's cannot decrease. If, at a particular step, no
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increases, then we are at a solution. The (¢ 's have only the values zero

or 1, so even if only a single </> changes at each step, the process terminates

in at most » steps.

My
The solution thus obtained will be denoted by . We

. o () .
shall now prove that this solution is minimal. Let be any solution of

the equilibrium equation (16.12). Then for the iteration process (16.13),

we have 7’\‘-1' < 77 [ , for all (/ . Since the right-hand side of (16.13)

. . . ey
is a monotone function of , we have

4 r)
86 N,y A / y (/) N 1 b ‘v ey S
; a ‘g s Na com g e =
/r, i : (’1 ¢( f 4 b J : W) /f\/ A / Y
/ N
o )l TSN Y 5,
Similarly, il =i , hence 7 =i . Hence p is
minimal.
To avoid consideration of a special pathological case, we now
. . . N
make a mild assumption. Consider the sum ? 2 o taken over a
: CER
subset R of the possible values of Rl AP ) ). We assume that no
such sum is equal to 4 . This is not a serious assumption, since by a

Nao 77
small change in --—a,—( this requirement can always be satisfied.

)
Now suppose that the 5 »!  satisfy the system of

)

differential equations (16.11) and the initial conditions " (0’ =2
Then we assert that the PO are non-decreasing and
. L 4
‘ (¢) . . . . .
Lim L) = 7 . That is, the solution obtained by the iterative
t >0

process {16.13) is indeed the sotution of the differential equation (16.11),

with initial conditions zero in each case.
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First we shall show that

(i) '
Cc[/Z; > (0. Moreover, if /'m('t) > () , then

Ity
a7 (o)
de o

As a preliminary step, consider the nature of the solution of

.~ -~ M~-dr , where M and ¢ are positive constants,
. M -0t s 4y
(),

the equation

. M )
and »({?) = 3 , where ( “ < The solution, % =7{7——€ 7 g

has the appearance of the following curve:

A

4// (@)

The solution approaches A/ 7~ monotonely from below, and /. /¢ - _

forall - -2 . Ifattime ¢ = ¢, we replace M by M, > M the

solution appears as
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as ¢ goes from U to #, the solution approaches M/rf monotonely from
: g g /
below; as ¢ increases beyond 7, the solution approaches M, /7 monotonely
from below. The solution is continuous; so is its derivative, except at t/
where the left and right hand derivatives are not equal, but both are positive.
M

If instead of T > (0 , we take M= =0 , the solution

is xi¢) =0 for C,'SE_/»Z'/

We now proceed to the proof of (o¢) . Let
M. + Ao 1 Z < D o 7" , r,)) . Then (16.11) can be written
=/
C/~ g." Y/ ‘./L.)

ot (16.14)

where here and in the following paragraph, ¢ is a generic index of the set
(t,2,...,~ , while ; and < will refer to specific indices to be

defined below.

Each equation A* (¢’ can take on at most . " possible
}

y - 0 . (
values. Let 2 be a specific value of / and suppose first that M~ (0) = C

’
<y

can change its value are when one of the

The only times at which
' o)

3 (indeed one whose corresponding - ' ) reaches the value «¢-
Suppose the first time at which this happens is 7, - . Suppose F_hen
that ¥ : 7 . Since in the interval < <, all /(;r‘ = ’
we have M e rpoo> M ".' t,)) . Thus the solution 7"“(0(25) appears
as in Figure (b) above; in particular, for all 4 such that /\//“'6)('0) >

A) (4
(A, M TD) A
we have / (e,) < - e ;

;/
£y : and for the others
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(i)
() MoOT(t))
ro(t,) £ d‘“/

derivatives of Z"(d)(z‘,) are positive we have, for ¢ > ¢, and sufficiently

closeto ¢, , 7 M(t) > 6 , so that it will not be until ¢, , with £, > Lo

Furthermore, since both the left and right

that there will again bea m(t) having the value & . In the interval

t, <t < t, we have the same pertinent conditions as we had in the interval

dr' 7, ) L
0 <t <t,;namely, T M (t,)-dy (t) , with initial values
., (i) 2 (;4) 3
' MU, ) / . M ( '
i) & 7 bl and in particular Vs ’g)/t,) e A Thus in
the int 1 RS RS in h "j;f{li > ) d d_z_(c) > ()
e interva 2y K , we again have ;, =7 yan T g

The same argument applies to successive intervals (¢, , Ty ) ts, Ay

. i)
and so on. Since the ¢/ '.¢) are monotone there are at most » such

intervals.

: ¥, &),
¥ Mg 0 ,then F el for (<tr <t U

(&), ) . .
M ty) » 7, then we use the previous argument starting at ¢ = ¢, ;

L@
otherwise 7 remains zero at least until 4, , and so on. In any

case, the statement /«s) has been proven.

Next we shall show that

Limal A () = R R A (/3)

L o2

ol

Since, from the proof of (n) it is clear that each 7' (¢,

: o (T . . () #
is monotone and bounded, tl_z'go/( t) exists; call it / ;
. No 1 .
it is a sum of the form J 2 C;; , which was assumed at the
’ JEK .

outset to be unequal to A , and thus 'J'(t)# #+ o . Therefore,

/ . : Jd NERR .
@ A - 7 (”) is continuous when J (2 J & . Letting ¢ » o0
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) #
in equation (16.11) we see that Z'([) is a solution of the equilibrium

. L2 LW 3
equation (16.12). Hence 7(”# =27 (& , since 7‘(” is minimal. We
B e
next show that for all # 20 , Z”(')(t) £ Z"(“

o -

Ncte that initially 7'( 0) £ 7 & Suppose that ¢,
I8 #*

is the first time at which some A 'é)/t) =7 (4) . From (16.11) and

the fact that OQ is non-decreasing we see thatat ¢,

dJd : Co) ) o (B)
Frea Ny 7 Z’(I.J. (/)\ < (t,))-d/ (t,)
, . 7 A((/.’ (./‘)* ;%) .
< 1, p Zf,l-jj)(,; v )— ¢ 7' e,
J
At L A)
d -JF () =0
A/ o
1.e., o/f < 7 at r - f,
4 T
¥ 7 ~ (', we have from (/) that ./-‘t > tat ¢ , which is a
contradiction. Suppose that it 9 , so that also ¢, = () . Then,
as long as no /' Yl reaches a non-zero '/"I) , we have

n n
(£) i () (). ) \ VA W NCIA
w0 X 0 (8 p ) e mn 3o o( 3 )= er ™0,
= 7=
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. \/4 ,(')x'
Hence over this period 7' )(t) =00 . Butno non-zero 7 can
ever be attained by /'(""(t) , since, by the above argument, we
A7t . L
would have —an < (0 at the first time this occurs, in contradiction
oLl
to (rv!
e ] (r* .
Hence if 7' s , then 77 (11 < o . and if
O A PN (), F
7 -9 , then J (‘)(t,) = 7 Y In general, “lr) ¢ gt
() # 2 gy S
Hence [/ = lim 7 Ut < g , and (/1) follows.
From this point on, we shall be concerned with the steady-state
values 7'(” , and for brevity we shall drop the ' In the terminal

(< .
condition, the A-unit ./, , whose history we have been following up

to this point, is activated by . if 3 L ) > %2 . The set of A"Z)
units which are activated by stimulus - are denoted by / - e T
the initial state, the set - - ‘ { ;) is dencted by /4,‘)" >, , and in the
terminal state by ', " .-/ . The expected fraction of 4"’ Units which
are activated by both - and >, will be /‘)[5’.) and is equal to the expected
number of units in 4 '/2)/'_-) /] A '}.("V divided by N,

Once the ‘/-' " are known, the behavior of the perceptron in its

terminal (steady state) condition can be predicted. To determine these

, . (3 :
terminal values of 7 , we can proceed as follows. First, the set of

/\”' units is broken into the smallest possible cells of the Venn diagram
which represents the sets of units responding to diffe'rent stimuli (c.f.,
Fig. 43). For the units in each of these cells, there is a characteristic
/3 -vector. For each such 2 -vector, we solve equation (16.12) for

(

the terminal values of . Here wec assume /'/: to be given, and
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{1) . o
& can be obtained from previous equations (as in Chapter 6). Initially,

Gz
Q‘.J(.:J = QL-E’) Knowing A’m and 2”(‘.) , we can determine the

region of the A 2 Venn diagram to which each cell of ,4(2) units moves.

Thus we obtain the complete terminal distribution of A-units in the Venn

diagram of A i , and hence in particular the Ql-jz) . It can be seen

that the motion will be for A -units to tend to go into higher-order intersections,

but that points which are initially outside all the A(Z)(SL-) will étay outside

9

all the A7

16.2. 2 A Numerical Example

To clarify the above description, an illustrative example is
worked out here numerically. Suppose there are three stimuli, 5’ ! 52 ,
and _'3 , which initially activate sets of A(2) units (or sets of A(/) units,
which will be equivalent under starting conditions) shown in the Venn diagram

¥ 2}
of Figure 43(a). Here the %;- matrix, and the initial value of the Q/J‘

matrix is
3 o 1 \
1 .4 3
1 3 6
Suppose the sequence e e o , from the above analysis, is
g ! m
TR PR e .ThlS is repeated over and over

during the training, or 'preconditioning' of the perceptron. Then the ‘E[J'

matrix 1s

-360-




e

Figure 43 (a) VENN DIAGRAM OF INITIAL A(2) SETS, FOR ILLUSTRATIVE EXAMPLE.
10 A-UNITS, DISTRIBUTED AS SHOWN.

A
(N

Figure 43 (b) TERMINAL VENN DIAGRAM, FOR 7/d = 6 = 1.
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/ 3

DR
2o
AN,

The equilibrium equations (16.12) then become

7 / /
// 0% \\ .4 o &) .4 ///."\/le‘* _7‘1/
[N I .’ P I S A B R L
: T \ T
L .~ o4 e )
\ \\ ) 0 \r i 4

A0 .04
4 3
N 5

(16.15)

Now we begin to trace the destinations of cells of the Venn diagram of

Fig. 43@). Start with the two A -units which are activated only by ¢

—

S

Here .7 2.'. ., 7). The first iteration of (16.15) then gives

b4

\ ‘47

; =SS
7

1 }‘.4

~ / 5 — ) q Q
If » 9 < -=/1.7 , thenthese [ : are zero, and the points in question

stay in the same resion of the Venn diagram. To be specific,

let us take ¢ /. Then we get for the {irst approximation
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and for the second iteration,

which is the fixed point. The two associators in question have consequently

moved into the triple intersection of the Venn diagram in Fig. 43.

Continuing in this fashion with each of the eight cells of the
Venn diagram, we finally arrive at the terminal distribution shown in

Fig. 43(b). For this we have the terminal Q-matrix:
7 \
[ . n 4

LT R

LA
)
The stimuli S and *5? have become indistinguishable. The G-matrix for

N\ ‘

an ¢ -system is the same as \»'J-& , while for a 7 -system, it would be

The ''coagulation' of 5, and _, corresponds to the fact that in the training

sequence (which is reflected in the /.- matrix) 9, and 5. follow one
another quite frequently, whereas they are very rarely followed by &

Consequently, tends to remain distinct, in the terminal G-matrix.

In the following section, it will be seen that such behavior is quite character-
£i3

istic of this system.

% Another numerical example will be found in Section 17.2, where the
four-layer system is compared with an open-loop cross-coupled model.
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16.3  Organization of Dichotomies

The general analysis of the preceding section can be applied
to a large variety of particular experimental designs. To begin with, we
will show that with a suitable choice of parameters for the perceptron, and
a suitable sequence of stimuli, a perceptron can spontaneously dichotomize
an environment into any two classes, without any control of the reinforcement
process by an external agency or experimenter. The organization of the

n
stimulus sequence will determine the particular dichotomy which is formed.

Let the sequence of stimuli to which the perceptron is exposed

be Seo e L In the following discussion, such a sequence
will be Ealled a "precoxmd‘itionix1g sequence''. Let /; denote the fraction
of occurrences of = in the given sequence, and let PJ',3 denote the
number of times | immediately follows - divided by the number of
times _: occurs. Then - ﬁfj;l Fﬁ F- . Witha sufficiently long

s

sequence, -/-' /| | and the equilibrium equation takes the form:

r /7
i 5 1 © (&) (&) '
) — 7 E (0 pag st e ) )
s ooy Y T (16.16)

where /- corresponds to the probability of »;, and #:4 corresponds to

-

[

the transition probability /». o e = Sl D ;"[! "J-}' .

% This can be interpreted as an R-controlled reinforcement system,
although it does not actually depend on the outputs of the R-units in
any essential way.
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EXPERIMENT 10: Take an environment, ./ , consisting of » stimuli,

such that there is no appreciable difference in the retinal
overlap of different pairs of stimuli. (With a large retina, a
set a random dot stimuli will generally satisfy this condition.)
Divide the stimuli arbitrarily into two classes, so that

are in Class X , while S/\, Sn are in

Spp Szveees e T

Class Y . All members of a given class are equally likely to
occur. Let the probability of transition to a member of the

same class be p , nearly unity, and to a member of the

opposite class be /-, , nearly zero. Let the perceptron be
exposed to an extended preconditioning sequence composed
according to these probabilities, without any control by the

r.c.s. At the end of the preconditioning sequence, the perceptron
is exposed to a short additional sequence composed in the same
manner, during which R-controlled reinforcement is administered,
according to the rules of the  -system, for A-unit to R-unit
connections. The values of all connections are then '"frozen',

and the response of the perceptron to each stimulus in 1V

1s ascertained.

It can be seen that this experiment is closely analogous to
Experiment 9, in which the effects of R-controlled reinforcement were
determined for an environment of horizontal and vertical bars, except for
the preconditioning sequence (which would have no effect at all in a simple

perceptron), and the additional condition that there is no way of determining
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whether two stimuli belong in the same or opposite classes on the basis of
their retinal overlap. The only thing which characterizes two members of the
same class differently from stimuli of opposite classes is the difference in
transition probabilities in the preconditioning sequence.

=] - 0o | TS . ) ..
We assume . = y- - VAT , where .. > ., o =2

Thus the diagonal elements of the ‘?":/-I matrix are all ('2 + A)/N@ and all
other elements are 9 /Na . {Note that by raising thresholds of the ,4(/)
units, with a sufficient number o connections, the ratio Q/«i can be made

as small as desired.) For the probabilities of stimulus-occurrence indicated

in the experiment, we have

‘. for - in
/. == ) .
¥ 1,70 for i in v
where L & & =i
] 4 )/
b for n ) J¢ 1N
P e e
[ ‘¢ L for o in A, o4 in Y
P4 e o
o or h in v, O 1N
[ € for in ', -, in

Then we obtain from (16.16),
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(16.17)

A ) n
// ? ~ 7‘.5, "/5) g // (A) (6} . \//)('4) (ﬁ/‘]—l
4 Z .»"</~1 « 7 ),LZ[ Z \f\,/f + 7 +A/?-Zl/«‘.£ gf-l'\/g + 7 //l
A A=

2= =K+ B

LLet us now assume that 57_ is one of the stimuli of class X

2 KL
B/ A=Kl

) [r=rp & S 4
RO R R y O/ff*/ww Af/-/a)+gf<z (5% ™) | 16.18)

We now observe the following:

v{ap+yri (3 (2)
— ) ) = / 5.0 .
PIE S then A ( = U A (JJ)

In words, if the stated inequality holds then, in the terminal

condition, each of the stimuli of class X activates the union of all sets

which were initially activated by any of the stimuli of class X . That is,
each stimulus of a given class has 'captured' all of the A-units that initially

responded to all of the other stimuli of that class, The proof follows from
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2)
the fact that any A( " unit which originally responded to any of the
K

stimuli in class X contributes a non-zero term in ) in (16.18).
g=/
The postulated inequality then guarantees that the A-unit will be active in

the terminal state.

N n{ali-p)rgk] (2,0 ) — (2)
i) If = 7 < 6, then Ay (5,) S s-Léx Ay (S;) -
J

In words, if the stated inequality holds then, in the terminal

condition, no stimulus of class X activates any A-unit outside of the union
of sets initially activated by stimuli of class X . The proof follows from
the fact that, if we were to solve (16.18) by iteration, then any A-unit
which is activated by none of the X-stimuli has, on the first iteration, no
contribution from i . In virtue of the assumed inequality it will not
have any contributio’i_o,n any following iteration either, and o remains less
than A~ . Since only a finite number of iterations are involved, this unit
does not become active.

: " . " 2) (2, .
iii) If the inequalities of (i) and (ii) both hold, then Afm et qU A, (SJ').
S ex

J

Necessary and sufflicient conditic s for both (i) and (ii) to

hold have been found by H. D. Block. They ar2

a) A . gk Kk-1
b) r - KA+?V{’K—//)]//J/K+/)

c) K'y(ap+gk) ¢ n/20d < K’/‘/\/A(/-p)»LQK)
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Condition a) insures that a probability /:)(0< P < /) can be chosen to
satisfy b). Condition b} insures that )7/29J can be chosen to satisfy c}).

The conditions can be written in the alternative form

a') p > A/SKET
b') > 7/(c‘//(—/"[f1/f\+/‘,'—/(‘t
c) as above.

Under the conditions indicated, if Experiment 10 is completed
by exposing the perceptron to a continuation of the same stimulus sequence
with R-controlled 7' -reinforcement, the first response to occur will
immediately generalize to all stimuli of the same class as the one which
evoked the response, since each member of the class activates the identical
set of A-units, after the precondimt.;oning sequence. Suppose a member of
class / is the first stimulus to occur, and that this happens to evoke the
response r' #1 . Then this response will be reinforced, and will
generalize immediately to all other members of class X . However,
under the conditions assumed above, the intersections between the sets of
A -units initially responding to stimuli of class / and stimuli of class Y
were all equal to 7 , and it was noted that by using large thresholds, 9
could be made arbitrarily small relative to the measure of the responding
A-sets. If each A-unit has a large number of distinct origin points (no two
identical ) g can, in fact, be made small relative to the product (; O,
Thus, with a large threshold, ina /' -system, the generalization coefficient

9;; for 5, inX and S in Y will be negative. Consequently, any
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stimuli of class Y will automatically be assigned the opposite response
from stimuli of class X . Thus a completely consistent dichotomy has been
created, from the time the first stimulus of the terminal training sequence
occurs. Further reinforcement will only strengthen the tendencies thus

established.

If the ratio »,'d is made large enough, the perceptron in
Experiment 10 will ultimately arrive at a state in which every stimulus
activates all A -units which ever responded to any stimulus of either class.
However, in practice, the constraints on the parameters need not be as

severe as those indicated in conditions a), b), and c) above, in order to

obtain useful generalization effects from the system. As long as )7/d
is not so large as to cause a complete merging of all A-sets for all stimuli,
it remains possible to teach the ''precorditioned" perceptron to discriminate

all stimuli of the two classes correctly with - single corrective reinforcement
i?(ap+qK)

3 > 6
24K 2

for one stimulus of each class, as long as the inequality

1s satisfied.

16.4  Organization of Multiple Classes

Suppose we have the same kind of environmaent as in
Experiment 10, but that the stimuli arc considered to be of, say, three

classes:

4/) A/ ;"'VAK)/j/)."JJ"'Y "1“‘-/' L‘:.«--v :\/.\/1 (/\/+/_+M = /7/).

We assume there is not too much overlap between the different types of
stimuli, an assumption which will be made more precise below. (as in

the previous case, the overlap can always be reduced as far as required

— —
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by making & sufficiently high.) The three classes will be called X, Y,

(1) ..
and Z . We assume that the @ matrix is

W
[ g9 /Ny if 5, and SJ- are in different classes
(;ij” ) (g1 7)Y, if 5; and 5; are in the same class, 5; # §;
_/1-*"«-/1) No if 5. - 5;.

From the nature of a (/;; matrix it is necessary that 4 = 0, g+ r) >0,

and [(r+4' >0 . We assume 4 > O

Suppose that the transition probabilities are large (o) for
transitions to a member of the same class, and small (/- p/ 7 to each

of the other classes. Within a class each transition is equally likely. Then

- T . .‘? e
o A Bk :
f - TN R T I £
N / v . ’ P, o W
f4 M om0 an -
r.. = J
‘.
Vi Cooae X o ;. Lo : <.
r p;, 2 ; in X. 2 in Y; or i in Z, S, in Y
I p Al ;oin X, Syin 7y or 5 in Y, S.in X
t o J
i 5w O . e & o a b4 o T, . \_ . )
(’ { 4 S in Y« 27 in /5 or 2/ 1n o 5J in X
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The probabilities of occurrence of individual stimuli are given by

'3 1 . i
//3,\ SJ in X
/3- = //jL _‘,J- in vy
| /3M S. in /
J

Then Equation (16.16) becomes

a0 MY
v .".”

2,202 22 202 22 2 wea

JEAOREX X beY jex peZ jeY deX  jeY keY

i

S ALl S N Z o fa-%wb(?f“w“))]

heZ jeZ bex jeZ Bey el ﬂeZ_J L

where, for simplicity of notation, X , ¥ , and Z have been used for the
appropriate index sets. Suppose X isin / (i.e., S, isin X ). Then

(16.19) yields

(16.20)

74 TR AER IO o k)
il '1 == .// : — Z/ Lot et
‘ . b X

- (Kt s)+ 20k f )
L =g )ik ¢ 2y WAL my RO
SN | { 22)/ &\/' 2_/ /

£eZ
We can now assert the following:

7 K o K
’ [79( Tty —I >4 , then the set AS )
34K7 Swex °

i) U
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That is, if the stated inequality holds, then every /—\(2) unit which initially
responded to any stimulus in class X now responds to each stimulus in
class X . This is readily proven by noting that for any /4(2) unit which
initially responds to any of the stimuli in class X there is at least one

non-zero ¢ in Z in (16.20). The postulated inequality then guarantees

(i) el & o
that 7 - 9 for any « such that SX is in X
- [ - pi(Krra)s 2gF (2) (2)
i) If ¥ — ST F e 4 ,then A /Sy) & U A (SJ-)

bk .SJ' €X

C . . ) . . .
That is, if the stated inequality holds, then every A( unit which did not
initially respond to at least one of the stimuli of class X does not respond
to any class X stimulus in the terminal state. This is proven as follows.

For an A-unit which does not respond to any stimulus of class X , none of

the terrns in ZJ in (16.18) are present on the first iteration, which
£
starts with ="' - 7 . The stated inequality guarantees that, even if all the
/)
other terms are present, no 7 ° for °- will reach 5 . Thus no terms
in L will ever be non-zero.
et
bove i o 2, (7)
iii) If both of the above inequalities hold, then A_ /5, u A, (SJ')
SreX
(7)

That is, each stimulus in class X activates exactly the same set of A4
units in the terminal state; and that set consists of just those A-units which

originally were activated by any one of the stimuli of class X
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Necessary and sufficient conditions that the inequalities of both

i) and ii) be satisfied have again been derived by Block, and are

a) o> -4/

b) 'l\/((/’\f“ J)/' ‘\—"'

c) po> f,yk‘A-//+f\Vr;-41,/ Ker+2e)(Kk+2)

d) _«'}\/. ‘F./(r*- { o+ /zK'l < l//"'//‘ < 6/\' [(/ e /-/l‘+/‘;\+ 7/2/(-'

Condition a) guarantees that a suitable 7 >/ can be chosen
in b); Condition b) guarantees that a suitable ¢ < / can be chosen in c);

Condition ¢) guarantees that an / ' can be chosen to satisfy d).

If the parameters are suitably set we have seen that the response

F
in the layer to any stimulus in class / is U Ay Similarly
R 2
for classes / and This means that a /' -system perceptron with a

single R-unit will tend to assign the same response to all members of the
first class of stimuli to be represented in the training sequence. All other
stimuli will receive the opposite response, if the initial inter sections of
responding A-sets are small enough. With more than one R-unit and inhi-
bitory connections between the R-units, so that only one can go on at one
time (c.f., Chapter 20) it is thus possible for the perceptron to assign a
unique response to each stimulus class. If there is too much initial overlap

" between the responding sets of A-units, or if condition i) is satisfied
without condition ii) being satisiied, a single corrective reinforcement applied
for any one stimulus of each class may still be sufficient to yield the correct

response for all stimuli in the environment.
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16.5 Similarity Generalization

In the experiments considered above, the nature of the stimulus

classes was never explicitly stated. Clearly, they could have been

similarity classes, under a suitably chosen similarity relation, and the same

results would have been obtained. In order to obtain generalization over the
entire class, however, it was assumed that "runs' of stimuli from each class
occurred, it being much more likely that a stimulus was followed by another
member of the same class than by a stimulus from a different class. After a
long preconditioning sequence of this type, it might be expected that the

perceptron would have seen each stimulus in the environment a great number

of times. We now consider the generalization of a similarity relation to

o,

stimuli which have not occurred during the preconditioning sequence.

~
<

EXPERIMENT 11: Consider an environment of stimuli ’,/ Hoaag j: veeey S

and their transforms 7/7,), T .. ...., T/, where 7T is
any transformation in which the measure of fixed points is zero.
Let the perceptron be exposed to a preconditioning sequence,

consisting of stimuli followed by their transforms, i.e., a

: T( s T($ ey, S (S, )
sequence of the form by Jé/_ ) o8 (_£2 s 0 )’5M’ Tl 4/{/}
where the subscripts #,, b,,... are picked at random
from the set of integers 1 through 7 . Now consider a pair of

test stimuli, ~, and f’g , and their transforms 7/%7,) and

T/ ’,,// , none of which occured during the preconditioning
-

sequence. Let one response be associated to ©, and the
opposite response to _’},j , by means of an error correction

procedure. Now test the perceptron to determine its response

to Tf’x‘and TS5 )

i
= This is directly analogous to the phenomenon of similarity generali-
zation originally predicted for cross-coupled systems in Rosenblatt,
Ref. 85.
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It is predicted that if this experiment is performed with random
dot stimuli in the preconditioning sequence, with a finite retiﬁa, and S5,
and >, are any other stimuli (e.g., a square and a triangle, or two letters
of the élphabet) the transforms 7 ., and T(S(/) will each tend to activate
the appropriate response, which was associatedto 5, and >, , respectively.
In other words, the perceptron will have learned that any two stimuli which

are similar under the transformation 7 are to be treated as equivalent,

even though the stimuli have never been seen before.

To begin with, we consider the following problem, which is
essentially a special case of Experiment 11, performed with only a single

test stimulus.

Consider the stimuli J, , 32 , ...+ 9, and their transforms
Sp. THi%y), Ze,s a fdonds- - Sep T';‘V) For example,
), «.... _ . may be in the left half of the field, and 7 a transformation
which moves them to the right half of the field. 5, (4 - 2K+ 1) is not

shown during the preconditioning sequence, but is a test stimulus to be

7

applied later. L TR TR 2K + « n . Let us assume S,
interseets Spyeeea o '/ £ ¥ toalarger extent than it does the others
and hence _ - intersects mainly the stimuli Sy vrre 5/‘\'4 , - These

relationships are illustrated in Figure 44,

-376-




—— RETINA

Figure 44 RELATIONSHIP OF TEST STIMULUS TO PRECONDITIONING STIMULI
AND TRANSFORMS

Specifically, consider the conditions

o (aran) N, >
Gy = '
’ ( Yt r//.v7 J </ 3
(1) /(}/Na L/.éK
Q,CJ = 4 (.;fr)///‘\/a K+l £ 5 £ K+l
‘ /./+A(/'/,.:(/-) /\{,) "/' > K+l

In the preconditioning sequence, a stimulus S; 1is picked at
random from S;y--+, &, and this is followed by its transform, 7'(5;) .
Then another stimulus is picked at random from j’ y- -y 5y and this is

followed by its transform, and so on. Then
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"I / »2/‘( (/ é 2/(
s
%) J > 2K
f oL K, B=Ktj
2= L0k sk, A<k
\ 0 rthernise

We also specify that no A-unit is activated by more than . ( 1< K/L) of

«

the stimuli &, 5,,..., 5.

From Equation (16.16) we obtain

kK , 2w K o
_(‘(7.‘ /\/}(’ IRAYE ')/Vfd'v. LlFe i { ' " /\ '//;' /J‘é (8)\
‘ N Z rjo e t L L Yy B2+ 7)1 (16.21)
. ‘ ' ' L _::V+tl }é:/ ]
i . ( . —
A oo RN T i Yoo a) l
i R L ) . f//L 3 e : L A ST '
< ' . =~ i

Hence we have the following results:

i) 1 s jeri, . Ki = - , then /,};(',‘:)/4;‘({5,‘)+_
J

In words, if the stated inequality holds, then, in the terminal state, _,
activates all those elements originally activated either by itself or by any

of the transforms 7/ ,,‘ ..... r o,

N vy o, (7). 12, (2) /..
i) If 2-;/%—(/\+/¢—L) <G ,then AL (5,0S A (S,) Y A (T(s).
J =

o |
iii) If both inequalities hold, then A, (5,) ~ AY(s. )+ U 4% (r(s)).
J <L
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Thus far, we have considered the generalization of a response

from 5, to the transforms T(S,), T(Ez) , etc.  Suppose a response

is associated to T(SI) ; we are then interested in determining whether
. -1
there is any generalization in the reverse direction, i.e., to T (SZ')

X /
We can obtain 2“( ) from Equation (16.21), with x replaced by x »

which yields:

P (') _ 7 2/\_‘{ It‘? (ﬁ(/j’(/ﬁ":{# T(/\’ﬁ/-)) . Z_r'/; /./fz ¢([),(d')+ 7(J))-J

2K 4
J=1

Consequently,
. , L /',u.q' (2) . (2)
iv) If /:?rf [Q'\'HL}* = |<9, then A (540 = A, .(57,')'

If irequalities i), ii), and iv) all hold, then the stimulus S, generalizes to
7/L,) ... 775, ) , but the transform T(5,) = 5, does not generalize
to the stimulus ., . Necessary and sufficient conditions that all three"”

inequalities hold are easily found: (With ¢ > 7 , then iv) implies ii) ).

a) ¢ / NEC AR Al {".

4 —1__/,
g+ G K_(K+/u/.l+/_r/u,
{2) 2 2
In particular, let L - / . Then A ($y) = Ag )(SI) + A{() )(T(S,)) .
. . () 5 = (2) s+,
Thus, due to the intersection between A, ( bx') and A, (T(S,)) .

the test stimulus generalizes to its transform, even though neither the test
stimulus nor its transform has occurred during the preconditioning sequence.
Under these conditions, the perceptron will behave in much the same manner
as the specially constrained similarity-biased perceptron of Chapter 15. The
actual magnitude of the bias thus induced, in a simple discrimination experi-

ment, can be calculated as follows.
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Let 5} be another test stimulus, like 5, , but its chief

intersection is with 52 , say also ¢ + 7 . Then if conditions a) and b) are

satisfied, (with L =/ ) , A((,j)(sg) = /422)(53) + AgZ)(T(SZ)) and
Afj) (7'(5;)) = Af’(?(% )) . Suppose the perceptron has zero

initial values on the A4 <) to R -unit connections. Let 51 be shown, and all

active A-R connections reinforced by + /. Then let 5} be shown, and all
active A-R connections reinforced by -/ . Now if the perceptron is shown
T(5,) (which it has never seen before) the input to the R-unit is equal to
the number of A-units in Ag} (T(Sz}) /1 E‘Jg)(T(S,),) UAS)(SZ)]

minus the number of A-units in AZ"(T(SZ)) N [Agj"(f(sz)) U Ag)(S})] ,
which in general is positive; while if it is shown T(S}) the signal to the
R-unit is negative. Thus the discrimination which was taught for 5;( and
) .

carries overto 7. S, and T’

~ N
T o i

In the above analysis, it was postulated that the test stimuli
should have larger intersections with some of the preconditioning stimuli
than with others. This assumption is crucial for the predicted effect to
occur. The reader will recall from the discussion of the last chapter, that
in a perceptron with an infinite retina, no similarity bias could be obtained
between random stimuli because the distribution of their intersections had
zero variance. The same situation holds here. If the preconditioning stimuli
are random dot patterns, and the retina is infinite, then every preconditioning
stimulus will have exactly the same intersection with the test stimulus 5, ,
and the required bias cannot occur. In a finite retina, however, the inter-
sections will be binomially distributed (as in the analysis of Chapter 15), and

the predicted effect will be obtained.
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We also note an advantage, as before, if compact, coherent
stimuli are employed for preconditioning aﬁd as test stimuli. In this case,
even in an infinite retina, the distribution of intersections will have non-zero

_variance, and the test stimulus will tend to be more closely related to some
preconditioning stimuli than to others. As long as two test stimuli, 5, and
5} , do not intersect the same sets of preconditioning stimuli to the same

degree, they can be discriminated in the terminal state of the system (provided
the required parametric conditions are satisfied), but each will generalize to
its transform. Thus the claim made for the performance of such a system in

Experiment 1] has been verified in principle. Quantitative studies of actual

cases are not yet complete, but similar experiments with cross-coupled
systems (to be presented in Chapter 19) suggest that highly satisfactory results
can, in fact, be obtained in practice.

The asymmetrical generalization from ° to 7/(5/ , but not

from 7{_, to . can, of course, be overcome by employing a symmetrical

preconditioning sequence, in which a stimulus is as likely to be followed by
-/

the inverse transformation, [ (.) asby T/(.).
. , )
: - 4 < s . < C ——
For instance, take : 5,,..., " AR RS IS YRR
s , .
ij,,...,SK; T{S, 7vees T(j}/// where Kk — n 7 . Let
[1) , :
roo. 7 . V
‘,, el
/JI. [ oy
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./3 (j é/(, :K+J'
/) /] >//(, 16 —J—’(
P;& = 4
J
(/-70)/(2/(-/) J < /(, A ¢K+J'
LU-p)/(2k=1) o>k, A * -k

Let 4o = p-(/-p),/'\'f/(-/) ; then the PJ;& can be

f <€, £ K, | £ 4 £ K, wehave

expressed as follows. For S =

Bt ™ Prak, ke = 7

S K+ A P# Ky & - u/’OT/?é

/ .
where ro=(l-w)/iK = (/-p) (2k-1). This means that the transition
probability from a stimulus to its transform, or vice versa, is r + «w ,

while for any two unrelated stimuli, the transition probability is r

Then from (16.16) we have

.7/( A 2K 1
l/)

i e

/ kil £+

K 'e

r:) //”‘K

!/

g e el _5_ Z + +
A

J / Z?— J / 3//4/ J /’!I

..Mw

-

Na 1 -
«
Y Z/‘

J

K K
(5)\ P (1)
L./ Pg b( s )_.4 Q’.J. ’.i/-:'g*l( (D(Gﬁ
b !

L X

(B+K)
)

N
'|

L

K

K ¥ «

A - 8 ) (B +K)

' Z—’ Z‘ )‘r/*“z )/’/“ﬁf ( )'LL Q J+K :H\ /+K~/(a ' )
ul';'l A= J= £=1 _
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Assuming 5[6{5/"“’5K} we have

K K
(i) v = i s
24 B Z/(J Zt 2_4 l((}+‘4d~tldb)(r¢(05( ))) + (f'-l-wd:/&) ¢(04 * )
J=1 é=1
s ylrrawsig) o) b rp(4))
() p K Kk : 7
‘ ) X % ; B 15**/( 4 &
77 T & 2 AR (e ) s o (! ))]*?wcf;s((f)(o/ ) s (™))
J= A=
/ Ag’;./- \'f‘f;b(o’,“a)) n /’r+u,0'f‘/,£/‘ ¢,\/rx(45+/())) '
7 ¢ 2/(0} ,f2//2f‘ tQu ot ) Z ‘@,/(1(8)1! - ¢,((X(.£+K/)J . _;/7(1;/ (D',/oc”(“))
£=1" . /K

Thus if p (or s~ ) is nearly 1 and A/g is large, 5. will
generalize to its transform, and conversely 7/%;, will generalize to §;

since

K

N PR SRV o n B SV
VA - . (//(9/‘1 %I.u‘i'»(il)# /[(‘b(o/ >+ \?(O )Jl + }7{7 O(Oﬁ( )

To get the specific form of the conditions for such generalization to occur,
¥

we extract the term for 4~/ in L and put it with the second term. This
& 1
gives the first required inequality,

(7 2KS)(2Kqgr r qur « ar + sur) 2 6
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or, replacing # and w interms of p , and 2K by n , we get the

condition

i) If 7’/(q+47o)/(fn > 6  then AS)(S;) =2 AgZ)(SL-) + A(OZ).(T(S;)).

The second required inequality turns out to be

(’7(K‘/)/2/((f)(2Kgr tQus + ar)< @

£

or, replacing 7 and « interms of p , we get

i) U p(n-2)[g(n-1)+ A(/—p)]/]n(n-/)d<9, then Ao(:)(s,-) = AQZ)(S,-)M?(T(S;)).

(2) (2),

2 .
iii) If both inequalities hold, then A;)(S;) = A, (S5) + A, (7'(5;)).

Necessary and sufficient conditions that both inequalities hold, given n > 4,

are
a) o >I(n-2) (3n-4)
b) g A[p"jn—4) n+2.,//.(n-/)(n-4)
c) e must be so chosen as to satisfy i) and ii).

For n =4 , these conditions are satisfied if p >/ /4 and

1/(g+4p) HZ e 12/ |39 1 2 (1-p)]
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16.6  Analysis of Value-Conserving Models

In dealing with simple perceptrons, a single value-conserving

model, the 2" -system, has been considered. In this system, the total

value of the set of input connections to an A-unit is conserved. In four-layer
and cross-coupled perceptrons two types of value-conserving systems are of
interest: the 7' -system, defined as beofe, (where the sum of the input values
is held constant) and the /" -system, where value is conserved over the set of
output connections from an A-unit, rather than the inputs. In the perceptrons
to be considered in the following chapters, this second system appears to offer
important advantages in performance, and will generally be preferred over the

7" -system.

The most important difference between the 7 -system and the
/7 -system is that the latter tends to activate those A-units which would

respond to the most probable successor of the present stimulus, whereas the

7 -system tends to activate the set of A-units which respond to the stimulus

for which the present stimulus is the most probable predecessor. The

difference between these two situations can be seen from the following example.
Suppose there are three stimuli, A, B, and C, with transition probabilities as

shown in the following diagram:
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In this case, with the 7 '-system, we would expect the set of A-units
responding to stimulus A to become most closely associated to the set
responding to stimulus C, since A is the only possible predecessor of C,
whereas B can be preceded by either A or C. Ina /’ -system, on the other
hand, the set responding to A would be most closely coupled to the set
responding to B, and might even develop inhibitory connections to the set

responding to C, since B is the most common successor of A, Thus the

/7 -system tends to be predictive, tending to anticipate the most likely
successor of the present stimulus, whereas the 7" -system tends to antici-
pate the stimulus which is most likely to be preceded by the present stimulus.
As shown above, this latter choice is not necessarily a good prediction of

the next event.

16. 6.1 Analysis of 7 -systems

The differential equation for the 7" -system is identical with

(16.11), except that the constants Cl-d- are now equal to

no
C.; Z ,Q;é) - c;)‘.mg)g/)') Fa i
-1
The negative term, - Y. @4 , is familiar from previous analyses of the
/" -system, and represents the quantity substracted to balance the gain
in value of the active connections. It will be recalled that for a Poisson
model, Qg™ Qi Oé is always equal to or greater than zero, so that the

expected value of ( will remain positive, and the previous analysis

oz
(Section 16.2.1) applies without modification. More generally, however, and
for a binomial model in particular, the C;d- may be negative, and the

previous analysis must be reexamined to see how this affects the situation.
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To begin with, it no longer follows that the solution will be
monotone, since different combinations of positive and negative C‘-J- 'S may
be picked up in equation (16.11), depending on which ¢ 's are currently non-
zero. Since the solution is non-monotone, it also does not follow that a
solution will occur in » steps, or that the solution of the iteration equation

(16.13) 1is minimal.

While we are unable, at this time, to provide any short-cut
method of finding the steady state solution (if one exists) for the 7" -system,
it is possible to compute a time-dependent solution by the following procedure.
We note, first, that the solution is piecewise exponential, as in the case of the

~ -system, and that the time constants for all Z(J." are equal. This means
that we can readily determine which = 2 will be the first to cross the level
of £ , by computing the initial asymptotes, MO(J.) for all ; . The 2”(‘/)

(i)

with the highest value of A, . will change most rapidly. If the initial
cop
value of <« " =~ , and /\/,(("/ is negative, © ) will iImmediately go
to O . If no M is negative, then the first change to occur will be for some @
(v)

to change from 0 to 1, and this will occur for that , for which A" is
greatest. Having thus obtained the first discontinuity point, 7, , we can
sk

), .
compute the values of all [ ’ (t,} , and determine the next @ to change.

This is done by computing the function

(()
A, Al' 7/

Ay )iu)

ﬁ»l' (f

8 (()_/3(4'/‘)_3‘([)(t5)

(16.23)

Joseph has pointed out that singularities are possible. For example, with
e-1, d=1, /3,1 ,and 45, 0,if C —(j'_j’) we have (at £ = 4n 3/2 )
Jy = ', 7,- 1 . Butthen 7, - 2-7, while 7, -~ - 7, . Thus 7,
immediately falls below 1, hence back to the original equation, which brings
it back to 1 again. While /, thus fluctuates about 1, the future history of
Z‘, is not determined.
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for ali i. Note that 5 will be greater than / only if the numerator and
denominator agree in sign, and (M/(f - 7‘) > ‘9 -3 - 7‘ . If these
conditions are met (i.e., if éﬂé >0 ) (b(oc(")) will change value some-
time before 3"“) reaches its new asymptote. Thus, by finding the value

(or values) of i for which éé is maximum, at the discontinuity time 74 :
we can always determine the next ¢ to change. Introducing this new ¢

gives us a new set of asymptotes, My, (7(‘.’)) , and the process can be
continued. The values of the 7(“([) at the discontinuity times can be

readily caiculated from the exponential solution:

. ‘ ()
Vg ~d -ty )M i
7t ) =t o =z é(é . , 16.24
i (rﬂ‘ /,) d ~ O/\ T (tg)) ( )
where the discontinuity time, 7., , , is obtained by solving the equation for
the next 7 to cross threshold, that is
/ ) Vg
V=R
(¢ ro)s-Ls e 16.25
SR e (L (o ' OB,
L)
16.6.2  Analysis of /7 -systems
The =~ -system is similar to the -systém, excepf that

after each increment of reinforcement, the total value is restored to its

former level by subtracting the net gain uniformly from the set of output
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connections from an A -unit, instead of the input connections. The differen-

tial equation now takes the form

‘/7’ (L') n n () () (l )
- N )7 E (/)(Q’ ‘ﬂ)) ;) E(Z) C)[l/' 7{/8 - ("T

dt @

The same uncertainties as to existence of steady state solutions
and difficulties of computation occur here as in the case of the 7 -system
analysis. A time-dependent solution can again be computed, piecewise, by

the same procedure as above. In chapter 19, we shall reconsider the

/7 -system, in connection with cross-coupled perceptrons.

16.7  Functionally Equivalent Models

In Ref. 41, Joseph has presented an analysis of a perceptron with
"binodal A-units'', which is now seen to be functionally equivalent to a variation
of the system analyzed above. In the binodal model, there is only a single

layer of A-units, but each A-unit receives two logically distinct sets of input

connections and has a separate threshold for each set. The first set of

connections is fixed in value, and activates the A-unit according to the usual

rules. The second set consists of a single connection from every sensory

point in the retina, and is variable in value. The reinforcement rule for

these variable connections is that if the A-unit is active at time ¢ , aﬁd the

retinal origin point of one of the variable connections is active at /+/ , the

variable connection gains an increment in value. At the same time, all

variable connections tend to decay at a fixed rate, This is equivalent

v

to a four-layer model in which each 477 unit receives its fixed connection

(! . . . q
from an 4 unit with a normal number of input connections and threshold 6 ,

: : : (1) . .
and receives variable connections from A, other A units, each having a

single excitatory input connection, and a threshold of 1. The main difference
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from the above analysis would then be that the A & unit responds to the
logical sum, rather than the algebraic sum, of the inputs from the fixed
connections and the variable connections, i.e., the A(z) unit is active if its
fixed connection (the 3 -component) is active, or if the sum of the variable

connections (the 7" -component) > 9 . As this writer had previously

predicted on heuristic grounds, Joseph has successfully demonstrated that
similarity generalization will tend to occur in the binodal model, after a
preconditioning sequence analogous to those discussed above. In this system,
the set of fixed connections acts as a ''template', and the variable connections
tend to adapt themselves to an origin configuration which resembles the fixed
set under the transformation T. The reader is referred to Reference 41 for a

quantitative analysis.

While it was assumed that the models analyzed in the preceding

. . f »
sections had a complete set of connections (from every ,4( g unit to every

7 oY
£y

A unit), a system which merely has a large number of input connections
(2) : N — (1 .

to each = unit, originating from randomly selected A J units, can be

seen to be equivalent in all of its essential properties. For such a system,

. . (2)
the { .. matrix, representing the expected values of the fractions of A

~ L.j
units responding to 5; and SJ , would have the same equations as before,
except that &/, must be replaced by the number of variable connections to

7/
each A " unit.

In the following chapter, it will be shown that a form of weakly
cross-coupled system, in which there are no closed loops, is also virtually
equivalent to the model analyzed in this chapter, and can be represented by
the same equations, with a slight reinterpretation of the .7 -component of

the input signals to the A -units.
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I OPEN-LOOP CROSS-COUPLED SYSTEMS

The most interesting features of cross-coupled perceptrons are
those which result from the possibility of closed feed-back loops, or
cycles, in the network. It is possible, however, to design a cross-coupled
system with no closed loops, and such a system has a number of important
features, including the ability to act as an adaptive similarity-generalizing
system equivalent to the perceptrons of Chapter 16, and increased economy
and versatility in general classification problems of the sort considered in

Chapter 5. These properties will be considered briefly, in this chapter,

before proceeding to closed-loop systems, which represent a more challenging

problem in analysis.

17.1 Similarity-Generalizing Systems: An Analog of the Four-Layer System

The three-layer perceptron shown in Fig. 45 is directly comparable
to the four-layer system considered in the last chapter. The A-units are
divided into two subsets, called A' and A'". All A-units receive fixed
connections from the retina, but only the A' units have connections to the
R-units, the A'units sending their output signals to the A' units., Each A'unit
is connected (in a fully-coupled model) to all A" units, and each A'' unit is
cennected to all A' units. The rule for modifying the connections from A’

2)

1 .
to A' units is identical with the rule for modifying A( ) to A( connections,

in the four-layer system considered previously: If the origin of the connection
is active at time t, and the terminus is active at t+1, the connection gains a

quantity » . All inter-A-unit connections decay at a rate d , as before.
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Figure 45 OPEN-LOOP CROSS-COUPLED SYSTEM (COMPARE Figure 42). BROKEN LINES
INDICATE VARIABLE CONNECTIONS.

Clearly, the only differerence between this model and the
previous one is that the 4 -component, instead of originating from one
of the A(l) units, comes direct from the retina, and consequently can take
on more than two values. The differential equation (16.11) and the equi-
librium equation (16.12) thus apply without modification to this system

1)

(where the A' set is equated with the A( set, and the A" set with the
A(Z) set). The additional freedom in choice of /3 -values means that the
sets designated 4(32)(5‘-) , representing sets of units whose /3 -value
in response to 5 is +/1 , rr.lust now be fractionated into subsets for

each possible value of 4 , and the history of each such subset (having a

given /3 -vector) must be followed separately, Thus the full designation
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2) 2
of such a subset would be Ag (A, 5;) . Apart from this further
fractionation of the A-set, the same analysis holds as in the last chapter,

L3

and much the same results would be expected.

17.2  Comparison of Four-Layer and Open-Loop Cross-Coupled Models

A numerical comparison of the performance of the perceptrons
considered in this and the preceding chapter will be based on the following

experiment:

EXPERIMENT 12: Take an environment of four stimuli, 5, ... 5, , each

having retinal area & =.2 . The intersections (,, and (,,
are each equal to .’ , and all other intersections are zero. The
perceptron is exposed to the following sequence, which is

repeated until a steady state is attained:

R v~ j ‘:‘ . . i g c ',‘ [N S q . 3
g er e D eay Ly S a5 5y 550, 5y 4'3“43“4) This sequence

can be considered to consist of two events, the first consisting of

the alternating pair =y 5 .y 5,... with a duration of /07
and the second consisting of :3 Dy 53 54 -+ also with duration
of /0v . A matrix of (. ; functions is obtained at the

beginning and end of the preconditioning procedure, to compare

steady state with initial conditions.

The relationship among the four stimuli can be seen from the
following Venn-diagram of the retinal sets, where the double-headed arrows
indicate the oscillating pairs of stimuli, and the number in each cell

indicates its area.
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The initial and terminal Q-matrices have been computed for a four-layer
and open-loop cross-coupled perceptron, as a function of the parameter
(1)

Ny 7 _//0" . In both models the parameters of the A units {(or of all

A -units, in the cross-coupled case) were , - 3, y = 0, and 6 = 2,

(2)

with a binomial model, In the four-layer model, & was also taken to be

Z , so that the systems are directly comparable.

The Q-matrices obtained in this experiment are shown in
Tables 5 and 6. The important Q-functions are also shown graphically in
Fig. 46, as a function of the parameter 7/, /7///(f . Note that for both
models, there is a considerable parametric rénge within which generalization
is much greater for stimuli which belong to the same event than for stimuli
from different events. This gain in generalization between 5, and S, ,

and S5, is more than sufficient to offset the handicap of

and between 5

_“3
the intersections hetween 5, and fj , and between 5, and 54 , which
gives the system an initial disadvantage. The cross-coupled model, while
it follows a similar history, has a considerably greater "usefrl range"

than the four-layer model, For the four-layer system, the range of
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TABLE 5

Q-MATRICES FOR FOUR-LAYER cc- PERCEPTRON IN EXPERIMENT |2

(PARAMETERS: x =3, ¢y =0, 8= 2)

"\

. 104
. 000
INITIAL Q-MATRIX: . 034
.000

TERMINAL MATRICES FOR:

1oy

7.0 < N 7/, < 88.9 070
d

034

000

000

31y

N, % < 166.6 280
03y

' 280

7Y
88.9 < N, T/, < 166.6 <.|uo
034
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. 000
.04
. 000
. 034

.0/0
LA74
.000
.034

. 140
7Y
.000
.034

.280
L3ty
.280
.034

.034
.000
.oy
. 000

.034
.000
104
.070

.03y
.000
A7
. 140

.03y
.280
314
.280

. 000
.034
. 000
. 1oy

. 000
.034
.070
A7

.000
.03y
. 140
A

.280
. 034
.280
L3y

~__  ~ 7

\_/v




TABLE 6
Q-MATRICES FOR OPEN-LOOP CROSS-COUPLED oc-PERCEPTRON IN EXPERIMENT 12

(PARAMETERS: X =3, y = 0, O = 2)

.10y .000 .034 .000
.000 .104 .000 .03u
034 .000 .104 .000

INITIAL Q-MATRIX:
.000 .034 .000 .lOY

\_/

TERMINAL MATRICES FOR 122 .018 .034 .000

018 .104 .000 .03y

7
38.5 < Ny "y < U5 034 .000 .122 .018

S~

.122 .036 .034 .000

.000 .034 .0I8 .IOY4
036 .122 .000 .03Y4

/s
W45 < Ny " < 77.0 031 .000 .122 .036

\_/

.000 .03% .036 .122

174,082 .034% .000
.082 .l122 .000 .034
.034  .000 .I74 .082
.000 .034 .082 .i22

77.0 < Np 7/ < 83.3

027 .034 .097 .I40

192 .31 .034 .036
0 131 .192 .036 .03y
88.9 <N, /¢f<"7'6 034 .036 .192 .13

036 .034 .13 .192

(76 .210 .072 .03Y4
034 .072 .210 .176
072 .034 .176 .210

210 .176  .034  .072

117.6 < Ny T/ < 166.6

262 .228 .03% .176
228 .262 .176 .03y
034 .176 .262 .228

(76 .034 .228 .262

166.6 < No /p < 235.2

3y .280 .034 .280
280 314 .280 .03y
034 .280 .314 .280
280 .034 .280 .314

Ny T/ > 235.2

A N— " ~____— A

183 .097 .034 -.027
7 097 .140 .027 .03Y
83.3 < N /p < 88.9 034 .027 .183 .097
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(a) Y-LAYER MODEL (b) OPEN-LOOP CROSS-COUPLED MODEL
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Figure 46  COMPARISON OF 4-LAYER AND OPEN-LOOP CROSS-COUPLED oc-PERCEPTRONS
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Na ///21 for which the system tends to classify events "correctly' is

77.0 to 166.6, while for the cross-coupled model this range is extended to
38.5to 238.2. Thus the cross-coupled model begins to show the generali-
zation effects earlier, and saturates later than the four-layer system.
Moreover, the transition occurs more gradually, in eight steps for the

cross-coupled system as opposed to three for the four-layer model.

The matrices shown here assume ¢ -system reinforcement.
A 7 or /7 -system, with the four-layer model, ¢liminates
all 4/’7‘; activity immediately, in this experiment. In the cross-coupled
model, however, activity is not completely eliminated, and the terminal
Q-matrices obtained for a )" -perceptron are shown in Table 7. Note
that the bias favoring ,, and 7., is eliminated for most values of
'/, 7 J , and that the ""dynamic range' is greater than in the o¢-system.

The /7 -system, illustrated in Table 8, is similar to the [ -perceptron

for small values of //,// + , but it appears to ''saturate'' more easily.

While the performance of the cross-coupled perceptron closely
resembles the system in Chapter 16, it is a somewhat more satisfying
model from the standpoint of biological plausibility and parsimony, since
it does not require the assumption of a special set of fixed connections
from A " to A/Z) units in addition to the variable connections - an
assumption which was necessary, in the four-layer system, to provide a
"template' for the 'organizatioﬁ of similar A ! units to be connected to
each A(z) unit, and in order to prevent all connections from decaying to

zero value. In the present scheme, all S-A connections are fixed, and

all other connections variable, yielding a conceptually simpler organization.
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TABLE 7

Q-MATRICES FOR OPEN-LOOP CROSS-COUPLED 7'-PERCEPTRON
IN EXPERIMENT 12

(Parameters: x =3, ¢y =0, 6 = 2)

.loy  .000 .034 .0OO

000 .10% .000 .034
INITIAL Q-MATRIX: A .oaw. .o000 .104 .000

.000 .034 .000 .04

M e

TERMINAL MATRICES FOR: .008 .000 .00I .000
000 .008 .000 .00I

001 .000 .008 .00O
000 .00l .000 .0C8

Na 7
0 < 81 < 68.7
d

N~

.009 .002 .002 .002

Nanp .002 .009 .002 .002

B8 TR e ST 002 .002 .009 .002
.002 .002 .002 .009

019 .012 .008 .008

Ngp 012 .012 .008 .008
2Bel < === A0 008 .008 .09 .0I2

008 .008 .012 .0I2

022 .022 .0ty .OIY
o4 .04 .022 .022

o1y .01y 022 .022

025 .025 .017 .017
Nap 025 .025 .017 .0I7
152 < -7%—— < 303 017 .017 .025 .025
017 .017 .025 .025
030 .030 .030 .030
030 .030 .030 .030
030 .030 .030 .030
030 .030 .030 .030

Mol 5 309

(
<
<.
<5
<5
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TABLE 8

Q-MATRICES FOR OPEN-LOOP CROSS-COUPLED /7 -PERCEPTRON
IN EXPERIMENT 12

(Parameters: X =3,y =0, 6 = 2)

io4 .000 .03% .000
000 .104 .000 .03y
INITIAL Q-MATRIX: 034 .000 .|10% .000

000 .034 .000 .IO4

/
<.
TERMINAL MATRICES FOR: .008 .000 .00I .000
Nan .000 .008 .000 .00
0< —5— <585 .00l .000 .008 .000

000 .00l .000 .008

009 .002 .002 .002

Nap .002 .009 .002 .002

e .002 .002 .003 .002
002 .002 .002 .009

019 .012 .008 .008

Nan 012 .012 .008 .008

e RS e EE 2 .008 .008 .019 .0I2
.008 .008 .012 .02

.022 .0I15 .OH4 .0OIu

.015 .0I5 .0l4 .Oly
.01y .01y .022 .0I5

<.om 004 .05 .ons)
025 .025 .020 .020
025 .025 .020 .020
020 .020 .025 .025
020 .020 .025 .025
<.028 028 .026 .026>

N
88.5 < ;'7 < 92.0

N
92.0 « —=£% < |3}
o

N .028 .028 .026 .026
131 < %? < 6 .026 .026 .028 .028
026 .026 .028 .028
.030 .030 .030 .030
030 .030 .030 .030
.030 .030 .030 .030
.030 .030 .030 .030

)

N
27 > 8|
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It will be seen in Chapter 19 that this system, with the addition
of a unit time-delay (all 5= /) performs identically to a closed loop
fully cross-coupled perceptron for the first two cycles of operation. By
further extension of the network along the same lines, it will be shown that

additional cycles of closed-loop activity can be duplicated.

17.3 Reduction of Size Requirements for Universal Perceptrons

In the case of simple perceptrons, it was demonstrated that in
order to obtain a "universal perceptron', in which a solution exists for any
classification of » stimuli, at least n A-units are required (Theorem 3,
Corollary 2, Chapter 5). Now consider an open-loop cross coupled pérceptron,
constructed as follows: Let the A-units be numbered in series Gy NG aNa
and let Ny = Ny (the number of S-points). The last of these units, aNa :
has an output connection to an R-unit. Each A-unit has a variable-valued
connection from every S-point, plus one connection for every A -unit prior
to itself in the series; i.e., a: receives a connection from every S-point

and from v, , a2, , ..., a-_

It has been demonstrated by Cameron):< that for small values of 7
(n =2 (5) only #og,(n) A-units are required in order to obtain a
universal perceptron, in which a solution exists for all of the 2" possible classi-
fication. This was demonstrated by explicit construction for » as
large as 8. At some higher value of »n , this ceases to be true, although

the maximum 7 for which the observation holds true has not yet been

determined.

N,
-

S. Cameron, personal communication.
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A lower bound for the number of A -units required for a
universal perceptron in such a system has been obtained by Joseph (although

it is not a least upper bound). The analysis (given in the Appendix of

Ref. 41) is based on the Hay-Joseph theorem that the maximum number of

orthants achievable by linear combinations of 7 vectors in p -space is

nt-!

(r-1)!
relative to ~» . An upper bound for the number of dichotomies achievable

approximately A/ /rn, ) = where » is large, and 7 is small

N \ ;o N,
with A,  A-units is found to be M (7 @ Nyt 1) Miz ’,Na+2)... M(ZNa, Na+A/d) .
It is shown that for large A, the number of possible dichotomies is increasing
at a much greater rate than the number of achievable dichotomies, so that

there must be some point at which the system ceases to act as a universal

perceptron.

-402-




18. Q-FUNCTIONS FOR CROSS-COUPLED PERCEPTRONS

A general cross-coupled perceptron is illustrated in Figure 47.
It consists of three layers of units, with complete freedom of interconnection

among the A-units. Due to the likelihood of closed circuits of connections

within the network, this is called a closed-loop system.

S-UNITS

A-UNITS

Figure 47 TYPICAL CONNECTIONS IN A CLOSED-LOOP CROSS-COUPLED PERCEPTRON

In passing from open-loop to closed-loop networks, several
fundamentally new considerations enter into the analysis. In the first
place, the state of the network at time r becomes a function, not only
of the present sensory input and the momentary values of the connections,

but of the preceding sequence of inputs and past activity states as well.
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The dependence of the system's state upon time-sequences of previous
states means that the transmission time, T which previously

played no part or only a minor part in the analysis of system performance,
now becomes a parameter to be reckoned with at all times. The question

of network stability is also a fundamental one; some cross-coupled
networks, once triggered, will explode into total activity which prevents any
further stimuli from making any impression at all, others will oscillate, and
others will settle down to a stable steady-state condition. In this chapter,
we begin by re-examining the concept of Q-functions, in order to provide a
means of measuring the response of the network to sequences of stimuli,
and comparing its response quantitatively for different stimulus sequences.
These new Q-functions will be found to encompass the functions analyzed

in Chapter 6 as a special case.

18.1 Stimulus Sequences: Notation

In Chapter 4, a stimulus was defined as any set of input signals
to sensory units of a perceptron, excluding the null stimulus. In practice,
these signals are generally taken to be 1 or zero. For present purposes,
the null stimulus (all signals equal to zero) will be re-admitted as a stimulus,
and will be symbolized by 0 when it occurs as part of a sequence. A
stimulus sequence, m!l‘ Y "/ R R ‘,“m can be an arbitrary series
of stimuli which are assumed to occur at successive discrete times

Ty Bp s A, 24 0 e =R . An arbitrary set of stimulus

sequences can be taken to comprise a stimulus-sequence world, for a

/

given perceptron, in the sense of Definition 26 of Chapter 4.
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In this and the subsequent chapters, it will be assumed that the
transmission time, [ is equal to At for all connections, Coj and
this transmission time will be symbolized in abbreviated form by 7
Consequently, if a stimulus S; occurs at time ¢ , the response to this
stimulus in the A-system occurs at time ¢ + 7 , and Q; is interpreted to
mean the probability that an A -unit is activated at time ¢ if S, occurs at
time 7 -2 . Ina cross-coupled perceptron, however, (¢ is nota well-
defined quantity, since in addition to éignals from the retina, an A-unit may
receive signals from other A-units at time ¢ , so that the response at time ¢
depends both on (¢ - /) and on the activity state of the association system
at -7 . 7Q; istherefore redefined to apply to sequences a/t' of length
m , which begin at time 7-m7 , and terminate at f -7 , with the association
system assumed to be totally inactive, or ''silent' at time ¢ -m7 . In this
case, for a sequence of length 1, (;/L' is interpreted in the usual manner,
and is represented by the equations of Chapter 6, without modification. For a
general sequence of length  , we use the notation Qfm to designate the
probability that an A-unit is active at time # , given that the sequence J;
began at time (-7 , so that the m th member of the sequence occured at
I -7 . More generally, we can write B to designate the probability
that an A-unit is active at time ¢ if the sequence g_/fl- began at f-r7 ,
where r may be less than, equal, or greater than m . If r is less than m,
this is equivalent to the probability of response to a truncated sequence,
containing only the first + stimuli of the sequence N![ = \’ﬁ'(',, f,‘t-z ey S[I‘ ,...,jt-m).
If »_m , we adopt the convention that the sequence ' is understood to
have been augmented by the addition of 7/ -/» null stimuli, yielding the

sequence (5/, 5) yerrr S Oy Qg ) . In other words, it is assumed

that the sequence JL‘ began at /-1 , and that no other inputs occurred
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through time ¢ -7 , the probability of A-unit activity then being determined
for time ¢ . In a simple perceptron, this probability would, of course, be‘
zero for 7 >m ; in a cross-coupled system, however, the presence of
persistent cycles of activity, or reverberating loops in the A-system, may

maintain Q"r > (0 for an indefinite period.

¢, 1is redefined in a manner analogous to ; . Where JL
v

and J are any two sequences, we define
v

b = = probability that an A -unit responds at time ¢ if e/[

b I
begins at 7-.7 , and also responds at time ¢

if J; begins at ¢ - 7

It is again assurmed that the A-system is ''silent' at the start of each sequence
for which the Q-function is defined, and that if s or 3 is greater than m ,
the corresponding sequence is augmented by a sufficient number of null
stimuli at the right-hand end. Q-functions with arbitrary numbers of sub-

scripts canbe generated by an obvious extension of the above definition.

In contexts where no ambiguity can arise, the notation Q[J- will

be used to denote 7- , i.e., the probability that an A-unit responds

tindm’

immediately after the termination of (\{/‘_' and also responds immediately

after the termination of ofJ . Note that it is not required that the sequences

o

; and JJ be commensurate, i.e., the lengths m and m may be different

for the two sequences, without requiring any redefinition of @i
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Generalization coefficients, , can be defined analogously

'(/i;LL '/'1.)
to Q-functions. For example, in an alpha system, we would have E(J(,t./w/.p)= Qi,u iy

is a measure of the increment added to the output signal of

where 5%, s

the A-set responding after » stimuli of the sequence n/; , as a result of
th .

an v -reinforcement after the .« = stimulus of the sequence JL' . Again,

if the second-order subscripts are suppressed, it will be assumed that

7 7. the effect of a reinforcement immediately after the termi-
v "mYm’
nation of

B

of q;fl . If reinforcements are always applied and measured immediately

upon the signal which follows immediately after the termination

after the end of stimulus sequences, the performance of the perceptron in
learning responses to such sequences can be derived from the resulting G
matrix, in precisely the same manner as was done for elementary perceptrons
in Part II. Thus a knowledge of the Q-functions for a cross-coupled perceptron

permits us to predict the performance of such systems in discrimination and

generalization experiments.

18.2 &; Functions and Stability

The rigorous analysis of ;= for a cross-coupled perceptron
with a finite number of A-units presents the identical difficulty which was
encountered in the case of Q-functions for multi-layer systems (Section 15.1).
The probability Q[, is, of course, identical to the funcéion @, defined for
the first stimulus of the sequence :.(fg in accordance with the equations of
Chapter 6; but the probability G, already depends upon the distribution of
numbers of A-units which respond to the first stimulus, 5[’ . In order to
avoid consideration of these distributions, the Q-functions obtained here will
always represent limits for large networks, where it can be assumed that the
actual proportion vf A-units responding after ,’iL-/L is equal to Q[“ LIt

should be noted that due to the assumption that the sequence J; starts with a

""'silent' perceptron,

[}
L
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A number of alternative topological models might be considered.
For convenience, the following analysis takes up the case of a perceptron in
which both the connections from the retina to the A-units and the "internal”
connections to each A-unit are constrained as in the binomial model of

Chapter 6. In this model, we have five parameters for each A -unit:

6 = threshold of A-unit
Xy = number of excitatory connections from the S-set,
or retina

= number of inhibitory connections from the retina
4. = number of excitatory connections from other A -units

g = number of inhibitory connections from other A -units

In the present chapter, we shall be concerned only with perceptrons in which
all input connections to A -units are fixed in value, regardless of where they
originate. Systems with modifiable couplings between A-units will be
considered in the following chapter. It is assumed that each of the above
sets of connections has its origin points assigned at random from a uniform
probability distribution over the S-set or the A-set, as required. This

results in the following equation for in

VT 2; F (E,) /1([;,) ;}(’ga) p4(/[a) (18.1)

{A-[A f‘Ea‘I‘Lé@
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where
/ o)y s, 7y Ly
e = () ik, ) (10
T WS R Vs Ly
A(L) =\, \( 1P
_ o W)y £, Aoy
PJ(E /) e \_'1/‘\0;1'—1 ') \/ kil",‘—/)
. \ T I
T = u N o8 o= 5y Yo 4o
/D-i\ll) (1} ‘le_/.-/ \ “11)_/)
£:, = fraction of S-units activated by %/
Taking ", - 0, .. can thus be developed recursively in terms of Q"V-/

up to any value of

For a Poisson model, in which the number of output connections
from each A-unit is constrained but the number of inputs is a random
variable (or in which both ends of a set of connections are picked at random)
equation (18.1) still applies, but the probability functions //, #,, #; , and £,
must be redefined, in a manner analogous to Chapter 6. It is also possible,
of course, to have some kinds of connections (e.g., the internal excitatory
connections) distributed binomially, while the other sets of connections are
organized according to a Poisson model, so that #,..... /, need not all be
of the same type. [For present purposes, however, we shall continue to
concentrate on the pure binomial model defined above. All major conclusions

undoubtedly apply tc Poisson and mixed systems equally well.
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One of the first questions to be raised about such a system concerns
the stability of the activity-level, and the possible tendency of the system to
burst into total activity in response to a transient stimulus (which would, of
course, preclude any possibility of learning or discrimination of different
stimuli). Figure 48 illustrates the response to a transient stimulus (i.e., a
sequence of length 1) for a number of representative cases. Figure 49 presents
the response of a number of networks to a steadily maintained stimulus, or a
sequence of stimuli all of which have the identical area. (Note that it follows
from Equation (18.1) that the actual sequence of stimuli does not affect Q[,) ’
so long as the stimulus area, P[“ , is fixed for each 5['# . Thus any two

sequences for which the succession of /r"/“ are equivalent will yield the same

value of Yi,ow)

IFigure 48(a) illustrates the effect of the size of the "trigger sti-
mulus' upon the transient response of the system. Note that the final activity
level is independent of (- ; it is also independent of #; and ,, , solong as

= - Figure 48(b) shows the effect of varying the ratio of internal
excitation to internal inhibition (7, and ¢y, ). For a purely excitatory
system, total activity of the network is likely to occur, in which all A -units
become and remain active. As the inhibitory component is increased, a lower
level of stable activity results, and with still further increase in y, relative

to x, , the initial transient activity will die away entirely. Figure 48(c)

Q@
shows that the effect of increasing the threshold of the A-units is similar to

the effect of increasing the internal inhibitory component. It should be noted
that all of these (/- functions in response to transient phenomena in a cross-
coupled system are identical to the succession of () -functions for successive
layers of & multilayer perceptron (as discussed in Chapter 15). For infinite N,

. v) : . . !
the equations for G)i( and (*'fu are identical, where ¥ in the first case

denotes the layer, and in the second the cycle of activity in the A-system.
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Figure 49(a) shows that as the internal inhibitory component is
increased to the point where the terminal steady-state level of the system is
below the value of (; for the initial impulse from the retina, a damped
series of oscillations occurs, which becomes pronounced as % is increased.
Changing the threshold (as in Fig. 49(b) ) also serves to reduce the asymptotic
activity level, but does not cause the qualitative alteration from a monotonic to
an oscillating sequence,as does the increase in ( . A sequence which is

either monotone or oscillating for one value of ~ will remain monotone or

oscillating as & is changed.

18.3 5:; Functions

The function for a binomial-model cross-coupled per-

I
ceptron can be calculated by an extension of the treatment employed in the

pre ceding section. The resulting equation (again assuming large A, ) is:

S . o .. (18.2)
K o el J < Pt K I ry 1l [0 SR R R
~ . E /B < Y r o) fat% r \
”[/AJ‘, / [‘A’FA 1= S ‘.'(‘,1'1/,‘],«1; ‘*_. ,fa,_:z,£7/V4 '[J'[J'Ia/
x5
L =
; 5
‘ < . 7 ( s { pe
where o, = £, + E, -, -Ty+E,+ £, -1, -1;

&

J B o z J . e J
EA‘/EA-[A-IJ "'Ea*‘CJ_I‘)—I“»

ﬁ
hN
I

The above notation for excitatory and inhibitory signal components received
from the "unique' and "common'' sets of sensory points and A-units active at
t -7° is an obvious extension of the notation employed previously {(c.f.,

Chapter 6). For the multinomial probabilities, we have
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,C
C . %, ! Xy EA [,A £
S(E, EYE vi) (W) (c,) (-uf-ui-ca
(N g A) Ed/t‘;,’EA/(/A EA EA‘EA (A (A) (A) ( 4" U4" )
‘ ; c {f £
,, : _ /! I IA S )VA—IA—[X'[A
P, i, 1) =7 . — (¢ (-4, -15-0
Aaxdho al= TR, ) “/‘) L
, s E" 35 - EELES

AP
B "1’”) T*",/Ej./ﬂc!(/,ir_ _E-5, ) (Vo) 'Ja/ (ca) (1-vs-ui-c,)

L

, o1 It rhrder
B Yu AT ) G )ga o lolo
/] p m/( [a J - o ‘;I rI‘/ ] 5 g < {/a) (U ) ("a (/—Ua-[ja-ca/

where . = proportion of S-points activated both by f;/u and 5.
AE
[ = «+ 7 .. where ' is the proportion of S-points activated
by ..
/A' k; -C, where £K; is the proportion of S-points activated
< l’,
by 5,
o TRV
{ .
(/a = ']’l' - (\/-
- wo P
;
U, = G )
- *)'/u-/ ootV
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For arbitrary values of « and » , Q",u‘jp can again be calculated by

a recursive operation, assuming that the perceptron is ''silent" prior to the
start of each sequence. If the two sequences «: and JJ' are incommen-
surate (or if w # ¥ ) the values of (, are thus taken to be zero up to the
time that both sequences have begun. (This is equivalent to extending the
shorter sequence by adding a sufficiex t number of null stimuli at the beginning

to make it equal in length to the longer sequence.)

Two questions are of particular importance concerning these

functions. The first is the question of the sensitivity of the system to

pertubations in a sequence of stimuli; this determines how well a cross-
coupled perceptron can discriminate one stimulus sequence from another. The
second question is the dependence of the present state of the system upon
stimuli from the remote past; this is of importance in order to guarantee a
sufficiently consistent response to a present stimulus so that it can be
correctly identified, and also in justifying an approximation to the perceptron's
performance by means of an analysis of finite sequences (as will be done in the
following chapter). Figures 50 and 51 present the results of an investigation of

%
these questions.

In Figure 50 the effect of a perturbation in the stimulus sequence
is illustrated. In ea;h case the sequence o(f, is assumed to consist of 17

stimuli { A 400000 Ay ). In the other sequences, one or more

I )
""perturbation stimuli' are introduced in place of some of the "A'" stimuli;

3¢
The data for these illustrations were computed by W. Eisner, on the

Burroughs 220 computer at Cornell University.

.415-




1

JININ0O3IS SNINWILS

a
G ol 5 0

i
i
:
e T |
1
]

e L P

VYYYVBEEBEBBYYYVYYYY
TV VETYYYYYYYYYY

ITNWILS 17V ¥04 T

>

‘0

M.& .m” WN

NI NOILV8¥NLY¥3d 40 123443 :SNOYLJIDYId 4314N0D-SS0¥D ¥04 “ 4P

1 1g°

VYNV YV VYYYY

=8V 'p - gg =% = Px

HOIL1vEYNLE 34 40
'NDILWHNO 40 L233443

-

(r)

a
gl Ql

5 0 Sl

a
0l

0 Sl

0G 24nb14

e
ol

5

g.=¥¥5
OILvy ®A:%x 4p 123443 (2)

g

= g

HHWW
”‘ﬁ"

NOILVIYVA 40 123443 (9)

SI= S

VYWV TRy VYAV YVYYYY

VYVVVVYVYYVVVYYYY

183IM3ANB3IS

£ “d)- = UN

6 NI

NOILVI¥VA 40 123443 (®)

-416-



these are denoted by the letter ""B" in the figure. In figure 50(a), a single

ot
"B stimulus is introduced, in place of the eighth A stimulus, with C ,

(the intersection between the '"B'" stimulus and the corresponding "A"

stimulus, ”48 ) being zero. We find that with 9 =2 , Q6 1is

abruptly reduced as soon as the ""B" stimulus occurs, and then approaches a

new asymptotic level, considerably below the O” level. With a threshold of

3y, however, the curve following the perturbation returns to the Q” level, so

that three or four stimuli after the perturbation it is impossible to tell from the
active A-set'that the perturbation occurred. If the location of the "B' stimulus
in the sequence is changed, the same type of (), curve is found, with the
deflection merely being displaced in time, but not changed in magnitude.
Figure 49(b) shows that the same asymptotic level is approached regardless of
the value of (5 , as long as the ""A" and "'B" stimuli are not identical

( € <.2 ). Ingeneral, it appears that the asymptotic value of (,, depends

on the parameters of the network, but is independent of the magnitude of the

perturbation.

Figure 50(c) shows that as the internal inhibitory component is
increased, the asymptotic value of (1’,2 approaches the asymptotic value of
Q” , in much the same manner as when the threshold is increased.
Finally, Figure 50(d) illustrates the effect of increasing the duration of the

perturbation up to four "B" stimuli. Note that the return curve following the

perturbation is practically identical in all cases.

Figure 51 demonstrates the effects of introducing null stimuli

at the beginning of each stimulus sequence, in place of the initial "A"

stimuli. The curves obtained are very similar to those obtained with a
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perturbation of the a\/, sequence, and it is again found that by increasing the
threshold or the value of y, the A-set responding to the altered sequence

can be made to approach the set responding to the original, unaltered sequence.

These results demonstrate that there are two distinct conditions
which may be found in a cross-coupled perceptron, depending on the choice of
parameters. With small & , or small values of ¢, any perturbation or
variation in the stimulus sequence will cause the system to follow a unique
course for all subsequent time, and the A-set which is active at time ¢
depends on the entire sequence at all times prior to ¢ , rather than on the
most recent stimuli. By increasing 7 or , , however, such a perceptron
can be converted into the second type, in which only the most recent stimuli
appreciably affect the current state of the A-system, and stimuli which are
sufficiently remote in time have a negligible effect. By lowering & or y,
slightly. the duration of the noticeable aftereffects of a sequence perturbation
can be increased, while still permitting an ultimate return to the A-states
associated with the unperturbed sequence This means, in effect, that the
perceptron has a "'short term memory'" for sequences of a length commensurate
with the time for the (). curve to return to its "normal" level, and such
sequences can be discriminated by the system. In discriminating such
sequences, the most recent stimuli will tend to dominate, and differences
which occur in the remote past will be harder to recognize. With the first
type of perceptron, however, which 1s obtained abruptly when the threshold
becomes low enough (or ¢ ~ becomes low enough) even the most remote
stimuli have about the same effect as the most recent stimuli, and the
current A-state gives relatively little information about what the present
stimuli actually are. Thus, in order to guarantee an adequate degree of
correlation between the activity state and the current stimuli, it is necessary

to maintain thresholds or mhibitory components at a sufficiently high level; a

perceptron of the first type is unlikely to be of much practical value.
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19. ADAPTIVE PROCESSES IN CLOSED-LOOP CROSS-COUPLED PERCEPTRONS

In Chapter 18, cross-coupled perceptrons with fixed connection
networks were .analyzed to determine their stability and characteristic
responses to sequences of stimuli. In earlier chapters, four-layer and
open-loop cross-coupled perceptrons were analyzed to show that an adaptive
preterminal network could vastly improve the capabilities of such systems for
similarity generalization. We now turn to the consideration of cross-coupled
perceptrons with adaptive interconnections between the A-units, and will
attempt to show that the same phenomena can be found here, in a more general
and more efficient form. The cross-coupled system not only recognizes
sequences of stimuli of arbitrary length, but tends to accellerate its adaptation
process due to positive feedback effects within the system. It will be shown
later that the closed-loop cross-coupled system is equivalent to an infinitely

extended open-loop system, analogous to the one described in Chapter 17.

The first attempt to demonstrate similarity generalization in
cross-coupled systems was that of Rosenblatt, in Ref. 85. This was a
partially analytic and partially heuristic argument, based upon a study of the
similarities of origin-point configurations of the A-units under an arbitrary
transformation. T. While the general predictions in this paper were correct,
and have subsequently been demonstrated in simulation experiments, the
method of analysis failed to yield quantitative predictions of the terminal
state of the system, after a prolonged period of pre-conditioning. The
method employed here is basically different, and yields a more general, as
well as more accurate, result. In the following sections, the time-dependent
evolution equations for the cross-coupled system will first be developed in

their most general form, and specific applications will then be made to
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systems in which the assumptions and initial conditions are simplified, to
permit a more complete analysis. In the final sections, several similarity
generalization experiments will be presented, and performance will be

compared with that of multi-layer perceptrons.

19.1 Postulated Organization and Dynamics

The perceptrons to be analyzed in this chapter will be assumed, for
convenience, to be fully cross-coupled, that is, there is a connection from
every A-unit to every other A-unit and to itself as well. It can be shown that
the conclusions which we shall reach for such a system can be extended to any
perceptron for which the number of cross-coupling connections per A-unit is

large, and the termini of the connections are assigned at random.

Connections from S to A-units are assumed to be fixed in value, and
connections from A to R-units are modifiable according to any of the usual
reinforcement rules. (We shall not be concerned here with the reinforcement
of A-R connections, but shall concentrate upon the evolution of the association
network itself.) The A-units are assumed to be simple, with threshold & ,
and output signals 2 -/ or 7 . The transmission time for all connections

is a constant 7° . Stimuli are assumed to occur at intervals of the transmissiom

time, 7

Interconnections among A -units are assumed to be variable,
according to the same rule employed for the four-layer system of Chapter 16;
namely, if 7 is active at time 7 , and a; is active at time ¢ + 7 , the
value of the connection :[J'

time, all values 7 - decay by the quantity At (7/.-J~) . The time unit, A+ ,

is increased by a quantity p-At, and at the same

will generally be considered large relative to 7 . In symbols, we have
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(7-dv;;) ot it af(t-T)aj(t) =1

-JAt ("f[J') otherwise (19.1)

thus the total signal, o /¢) , received by the A-unit a; attime t consists
of a fixed-connection component, /3;.t! , originating from the retina, and a
variable component, 7:'r) , coming from those A-units which were active at

r-r.

19.2 The Phase Space of the A -units

Let us suppose that the environment of a cross-coupled perceptron
consists of exactly »» admissible stimulus sequences. In order to obtain a
G-matrix for this perceptron, and predict its performance, it is necessary to

know how its A-units will respond to each of the admissible sequences, inclu-

ding the response to the lst, 2nd,...., m th member of the sequence. We
will use the notation u; (5:1. ) to denote the output signal of the unit a;
following the V‘th stimulus of the sequence u,/:; . If the sequence A{j' begins
at f- 17 , the stimulus "Q';) will occur at ¥-7 , and the input to the unit
@; attime t is given by

o/;(d,’_” /j[u Py 4 (is) +) (19.2)

where

j ‘/Jlt) )

is the sum of the signals received from the retina following
),
the occurrence of 5. and (. " (#) is the sum of the signals received
p

from other A-units at time ¢ , given that % began at #-»7. Knowing

(vp y)

Q . L 9
o, , we can readily determine ~; (SJ-)) , since
7

(J',)) oy
X, I if *; = 0
@, (3./';;
() otherwise
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i), .
In the perceptrons to be considered here, /‘SL-( - is a constant, while
(/)
7%"¥'(t) is a time-dependent variable (as in the four-layer perceptrons

of Chapter 16).

It will be convenient to »2present each abbreviated sequence
consisting of the first = members of any of the original » sequences by
a full sequence of length »* . If /» is the maximum sequence length, this
results in a set of at most rn, sequences. Let // be the number of such
sequences, and let them be numbered from- x/, through pd/, . Then in
terms of these new sequences, we can obtain all of the a.;(’i./-’}) = 7,.;(0»[,3} )

where «, is the sequence corresponding to the first » members of the

. . ¥ , :
original sequence /- . The notation 2 ("‘/U means the signal from a;
following the last member of sequence ./, . Similarly, we have

'8) (8, s

N = - + A rr

L 3

Ll e

All of the information necessary to predict the response of an

A-unit v+ at time - can now be obtained from the .’~’ numbers
. ',...,ﬁ'-.', /-' AN ., “+. 1, . Thus the

set of all possible signals (divided into retinal and internal components)
which might affect the activity of «, attime ¢ , can be represented
by a vector of /¥ components, which depends on # . The space of all
such vectors can be mapped into a Euclidean ./// -space. where each
point represents a possible A-unit, or set of A-units. of the perceptron.
This will be called the phase space of the A-units. For a large, or infinite
perceptron, there is likely to be some concentration of A-units at each
point in this phase space at time . . Thus, at time , there is a
probability density associated with each point in the phase space. The state of

the entire association system at a given time, ” , can then be represented by

a probability density distribution over the phase space of the A-units.
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For convenience of notation, parentheses for superscripts of
o , /3 , and 7" components will hereafter be omittekd, with the understanding
that the symbol /3[r means the /5 -component for unit ¢; from stimulus
sequence Jr . If exponents are required, they will be expressed by the
notation (,/Sl.r_)ﬁ , which would be /jL-r to the # L power. It should be
remembered that with the symbols o« , /3 , and 7, subscripts always

denote A-units, whereas superscripts indicate stimulus sequences.

19.3 The Assumption of Finite Sequences

In analyzing the performance of a perceptron, it will generally
be our objective to predict the condition of the association system in the limit,
as the length of the preconditioning sequence becomes infinite. This means
that there are generally an infinite number of possible sequences in the
environment, and the phase space of the A-units is properly represented by
an infinite dimensional Euclidean space. To justify later assumptions, how-
ever, it is necessary to assume that the preconditioning sequence is actually
composed of a mixture of a finite number of subsequences of finite length.
While this assumption will be carried through the analysis of the following
section, it will be shown later that it is possible to drop the assumnption in

the case of periodic preconditioning sequences.

Justification for an assumption of finite sequences can be found
in one of two ways. First, we may assume that only the /» stimuli prior to

time I can have any appreciabie effect on the activity state of the A-system

at time [ . In this case, we need consider only sequences of length m as

possible determinants of ”"r(/) . Note that this assumption applies only to
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the activity state of the system, and not to the values of the connections or

memory state of the network, which clearly depends on all prior time. Such

an assumption appears to be supported by the analyses of the last chapter,
which show that for suitable parameters, only the most recent stimuli affect
the activity state of the system at time ¢ , progressively more remote
stimuli making a progressively smaller contribution, which soon becomes
negligible. Specifically, it has been shown that with suitable parameters, it
makes no significant difference to assume that the sequence began at time
-7, rather than at some earlier time, which is equivalent to the assumption
of a finite universe of sequences of length » , in place of the universe of

infinite sequences.

An alternative approach, for which a rigorous analysis rather than
a mere approximation is possible, is the following: Assume that the activity
of the A-units is I"quenched" after every ,» stimuli; i.e., the perceptron is
shown only sequences of length '~ , and at the end of each such sequence, its
activity is interrupted by setting all ).f (), so that the next sequence begins
with the perceptron in a ''silent" state, as required. Let us analyze the
performance of such a perceptron (for which the dimension of the phasé space
is finite) and then let » approach infinity. The limiting behavior of such a
system should correspond to a perceptron in which the sequences are uninter-
rupted. For specificity, and to permit a rigorous analysis, this type of
mterrupted-activity system will be assumed in the following analysis, although

it will be shown later that the results can be extended to a more general case.

In keeping with the above assumption, it will be assumed that
there are a total of ¥ possible subsequences which comprise the precondi-
tioning sequence of the perceptron, symbolized J/ ) of) s “/N . The

phase space therefore has dimension /N~ , and it is assumed that no stimulus
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sequence (i.e., no subsequence) has more than » members (where m is
finite). By selecting both 7 and o sufficiently small, it can be guaranteed

that the change in the memory state of the perceptron during a single sequence

of length m is negligible, or infinitesimal, so that the output signal a?‘(ygf:g)
depends only on c.s/’g and the memory state of the system at the start of the
sequence, and does not depend on changes in the memory state which occurred

during the sequence v.)’j:é itself.

19.4 General Analysis: The Time-Dependent Equation

Given the probability density over the phase space of the A-units
at time 7 , it is possible to obtain the Q-functions Q;/U' gy = QL-J- for any
pair of sequences (of length « and + , respectively) by integrating the
probability density over the region of phase space for which a*(e/ﬁ;) Ox(x{) =/
That is, we integrate over the region for which « ‘e and  x' > 6
The subscript denoting particular A-units is suppressed here, since we are
concerned only with the density of such A-units, and not with their individual

identity.

The object of a general analysis of the evolution of the association
system in such a perceptron is to describe the "flow' of A-units in this
phase space, so as to obtain the density function at time ¢ as a function of
the initial distribution and the stimulus sequences to which the perceptron
has been exposed. The system can be represented by a sort of hydrodynamic
model; the probability density in the phase space is treated as a sort of
compressible {luid, in which convection phenomena occur, but in which
there is no diffusion, since it will be seen that the A -units which initially

occupy a given point in phase space will always move together, in unison,
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rather than following unique paths. Throughout this analysis, it will be assumed
that we are dealing with finite stimulus sequences (as described in Section19.3),
and that the rate of flow {the length of the velocity vector) for all points in

the phase space is infinitesimal over the duration of the longest st;quence.

The history of the perceptron, then, consists of an endless seqﬁence of such
finite sub-sequences, so that at a given point in time, the perceptron can be
assumed to be exposed to a mixture of all possible sequences, each weighted
according to its probability. The velocity vector for a given point in phase-
space at time 7 then depends on the combination of velocity components
contributed by each of the stimulus sequences to which the perceptron is

exposed.

We have seen that each A-unit, a; , is characterized by a set
. . . / 2 N
of coocrdinates in phase space at time I , namely (/?L- g JiF 9000 /3[ g

b

i N
4. ' ...y ). For the given A-unit, the ,J -components are fixed for all

&

time, while the 7 -components depend on ¢ . Thus, to follow the history
of this A-unit (or point in phase space) we must determine the velocity

vector . FEI SR ) as a function of time for the

point ( 2o A ).

We consider first the effect of the reinforcement which occurs

!
specific, suppose sequence ‘.// occurs at time 7 , and «,. occurs at

L+ 4+ , and assume the transmission time 7 << A¢# . Then the

. o ,
for the last stimulus in a sequence . upon the component . . To be

(infinitesimal) change in /;." due to having reinforced the last stimulus in
sequence J; at time ¢ will be denoted by Z\; (B:y 52(t)) . Itisa

function of the location of the point in phase space whose motion is being

-428-




traced, at time ¢ . Note that although only the effect due to the last
stimulus of the sequence J; is considered, all abbreviated sequences are
present among the N possible sequences, so that if we know the effect of
reinforcing the terminal stimulus in each case, the effect of all possible

reinforcements can be calculated.

A notation for the sequence corresponding to c{/7 with its
terminal member omitted (i.e., the sequence ;,J(/ abbreviated by one
stimulus) will be required. We shall use the symbol "(/»/' to denote such
an abbreviated sequence. The change in the memory state due to the last
stimulus of sequence :/f/ is then attributable to the modification of the values

/
of those connections which originate in the set of A-units which respond to
w{) +and which terminate in the set of A-units responding to of} . From
equation (19.1) we see that each such connection gains a quantity of value

/)‘/ - /.t , while all other connections lose a quantity -~ 7~/ f

Figure 52 illustrates the relationship of the A-unit sets which
are involved in this transaction, and shows the increments to 77 which
result from the occurrence of c-.// at time ¢ . The sets responding at
time ¢ and /-7 are designated .'./ (t) and /1.// ‘t) , respectively. The

set . “ 4. "1 is the set responding to the preterminal stimulus of

sequence ud’, The measures of these sets are wg(-‘l 5 ‘\L.'7'

-

) and W.(teAL) .
Since it was assumed that all A-units are interconnected, the measure of
the set of connections for which A~- =("'-7+ 4t 1is (D?/(t/' for

2% ﬁAq (t) , and the measure of the set of connections for which

Ao = =Nt is [ - Q'Zl R S AQ (t) , all of its input connections

lose -da-at . But we are particularly interested in the change in 7. '.,
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A-SETS RESPONDING TO A-SETS RESPONDING TO
ABBREVIATED SEQUENCES FULL SEQUENCES

Figure 52 EFFECT OF REINFORCING SEQUENCE Jg UPON 7"

which is the sum of the changes of value for all connections originating in
the set -,/ it « t), and terminating on the arbitrary unit «; , whose

~oordinates are 7 . These connections can be divided into

I T R

~ three subsets:

(1) Connections which originate from the intersection

4?,./" I A and terminate in A(}«’z‘) change by [)'- ) At
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(2) Connections which originate from the set
A (t+dt) - {Ag'(t) n A,.,(tTLAd')} and terminate in A, (t) change by
VAR

(3) All connections which originate from the set A.. (¢ +4t)

and terminate outside of /l? (t) change by -dw At

Now let us consider the difference equation

rsoa . o r
A, (8, 7:(t) = 77 (t+At) - 7.7(¢) (19.3)
for the A-unit a@. whose location at time ¢ is ( SIS e (Z)) . Since
7. = Z v , we can make the substitutions:
2-€A,.
1) = D an(0)
a-€A,. ()
J
,l:' r\// i ‘I'r) - (‘ ) '/J-t'."'/]f) - Z‘_{ . u/“. ([/' ! Zt A’)vr\/.‘.
2 €A (L rdiL) R () aJ-eA,.'(z‘

+ 2; Ui /f*ﬂt) - Z 'Z/\’/“'(tvLAt)

@i C{Aptibt)-Ap(t)]  2je{Ap(t) <AL (trat)]

Making these substitutions yields:

AJl B it E Au(t) = } £ (ErAL) (19.4)
i "1'.' ‘

L/.fc,q’_,
where AA,. = {A,u(t rAL) -A,u(t)} +{Ar'(t)—Ar’('t+At)} , that is, the
set of A-units added or subtracted from the set A,.'(t) during the period

At . The first sum represents the change of value of the set of connections
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which originate in ./ (#) and are reinforced at time ¢ due to sequence

S

el

This change in value is readily obtained from the components listed
above, and is given by

(. 7
No? Qi (t) = 8 v (t)JAr for a;eA,(t)
- a; €A (t)

Z. A7l =y

a; AL (t)]
- TAL e (t) for o; &A,(t)
Ji L q

2, €40 (2)

which may be combined in the form

AT T RV R e -0 ot (19.5)

a:/-gA,.rf,‘
o P -\ - . '
where, as before, 77~ =1 for o« 2 , and ' otherwise, and 2: (t)

A\ .
has been substituted for /= 2 0f

The second sum in (19.4) represents the value of the set of

connections which originate from the incremental set, /14,., . For this

sum, it will be convenient to substitute the symbol .vﬁ'g ',rl."'r‘ . Thus,
(19.4) becomes
2a -‘, '¢),v‘/".l, ,,‘.7 ',\/_ 3 Y‘FJ—”*#-/_}'. 7“r,"4.
3 . . N !Ll'l". ) R AR ¢/ “'li' Y 7 N RN
(19.6)
where the subscript . indicates that the subscripted variable is a component

of the vector 74, 7, f{for the unit a
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which originate in 4,.(#/ and are reinforced at time ¢ due to sequence
c,\/;, . This change in value is readily obtained from the components listed

above, and is given by

_'Na/’/‘O v (t) - d‘Z 'zrd-;(t)J:ﬂf for a;éAg(f/’

a'fAr'\/t,‘ .
’ -TAt Z ‘)/:--(z‘) for a[$Aq(t)

IN]
m
o
~
-~
o+
~

= ”/:.L‘(ﬂ = LND 7 "'(‘1'/’ ‘f/ C 'J";?- ]L' "7" - dmr/t/:, At (19'5)
Qj-gA,.:.k'r/‘
where, as before, 77~ =1 {for ¢¢ > ¢ , and " otherwise, and Z:-/-(/Z',)

has been substituted for Z: 2

s Ao by
Ry ‘

The second sum in (19.4) represents the value of the set of
connections which originate from the incremental set, /14,, . For this
sum, it will be convenient to substitute the symbol A; j;r't-" 4 . Thus,

(19.4) becomes

! l ,‘ \l i r l & ’
) ' Ny E ' J #’L“‘/Tf !
(19.6)
where the subscript . indicates that the subscripted variable is a component
of the vector "4,/ for the unit «,
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Now suppose each possible '"conditioning sequence", Jr; A
occurs with a probability P(/ , and that a statistically uniform mixture of
all such sequences occurs at time ¢ . This supposition is justified by
our assumption that the length of each sequence is infinitesimal, relative

to the rate of change in the memory-state of the perceptron. In that case,

we obtain from (19.6)

ATBLT ) = )Ry £5(5 7))
7 (19.7)

I /Y A Y _ ot X . r
N,y w,/_;@@q,,,,m ¢35 ¥ )| - oar 77w £ 870
I
where A"f[r t) - value added or subtracted due to connections originating
from the combined incremental set due to all (JO . If we now divide both

sides by 4t and allow At¢ to approach zero, we obtain the differential

equation for the velocity component /" /#/ for the unit a; ;

SENE Z 7 : - oL
‘. = , A E ol e Y YRR S
_(7»_ = /VI,) /'/ a,}",n’.') /u /)' r \,[' (t,)) l_{‘[‘ /) i ’J’;-
‘ (19.8)
A ATy
where S L ---——i
At AL» Faili
-0 : .
Note that the quantity .= ¢° ‘t: is zero except at those times
that new A -units are added to the set A1, // | since it represents the sum
of the values in the incremental set AA, . Again, we note that for

sequences of length 2 or less, the set A,.f(f,) never changes, since new

units can be added to the set only if ¢ (o rl) changes from 0 to 1, and for

* Strictly speaking, this is either zero, or fails to exist. However, this
expression will be restated below in terms of delta-functions (see

Equation 19.9).
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sequences of length 2, ([‘ (ozr’) = '/)(,/jr,/\‘ , which is constant. Similarly,
for sequences of length 2 or less, (_{J'y,r, (t) is constant. Consequently, for
these conditions, the equation (19.8) is equivalent to (16.11), except that

r
Q(},r, takes the place of Qg’r In the general case, however, 4*7'5 (t)/o(zf
is not always zero; at those times that new A-units are added to the set

: A .
~,+ , an unknown increment to the value of /." occurs, which depends upon

t

the values of the connections from those units whose (" has just become
equal to 7 . This quantity is exceedingly difficult to calculate, as it depends
upon detailed correlation of the 7 -vectors for the new transmitting units and
the = -vector for the receiving unit, 2. . Fortunately, it can be shown that
the steady-state solution to (19.8) does not depend upon the actual value of the
last term, even though it affects the rate of convergence to the stezady-state
condition.

In the general case, the solution of (19.8) is discontinuous, unlike

the solution of (16.11), which was always continuous despite its discontinuous

* {7 1 .
derivative. From the above discussion as to the nature of /1 *: (¢ , it

becomes clear that (19.8) can be rewritten in terms of Dirac delta-functions:
r'j ",.r'/' - . ] J . ’” I3 v r f
B N Sy 9, 2 o ‘ - P | R e R E Vg . 3 Vo ¥
:/f‘ ) N(,L/ 2 /LZ aql',l_r/ »)(/jl'*/L \r«} ¢ JL ’,‘/7 ,& // ! .,£ :-:\\ 7L v( (19.9)

2 . . c o
where ¢, is any ‘ime at which one or more of the O (n: ) changes from 0

to 1 or vice versa.
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19.5 Steady State Solutions

Consider the equilibrium equation corresponding to (19.9). If
an equilibrium exists at time ¢ , then no d) (x) can change its value at
time ¢ , and thus the last term of (19.9) is zero at this time. Thus, a

steady state solution must correspond to a solution to the equation

ff(' o '/Zf’ Sy () 9( 4% 7 ¥e) - 0 1) = 0 (19.10)

which gives

r N 7 PR . ) ]
Z:' (’Y) - ) a"l Z“. N\ {,r,(*)(,) (p(/;[gl' "1/00)} \19'11)

+ ./J. ' Al ~ i / . 1 ,( ‘ e ,.’ H
oo 30 Yo aoite) Xt} isle i)
{

(19.12)
Note that the terminal vector (,7, J,,) of an A-unit (in a given system)

depends only on the starting vector (,;’3, 7,) so that we can also write in

place of (19.12}),

| ' T(19.13)
- 17 . , ) ’ . ’ .,' -
iy, %/ [ & o 1,ﬁ}z’om)'}Z/'(/f,fo/"ﬁ//)'/l["/(’\"))fﬁ(ﬂf;é"(w))J

9 (4,7

where /’(/3, f, ' is the probability that an A-unit is initially situated at the
point (/j, 7,) in the phase space. Thus, in this form, the steady-state .

solution requires no knowledge of the individual A -units and their connections,
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but depends only on the initial point-mass distribution over the phase space.
The corresponding time-dependent differential equation represents the

velocity vector for an element of probability-mass in this phase space.

Now a possible solution of (19.13) can be found by the following
iterative procedure: Assume that initially, the values of all A-A connections
are zero, so that 7, =7  for all units, and (19.13) depends only on the

/3 -vectors. Begin by inserting 7, = 7 for all 7/ 's on the right-hand side

r .
of (19.13), and compute the resulting approximation for 7. (43, 4,,) , for
all possible - -vectors (or for all units, «: ). The first approximation for
"> 1s then inserted on the right-hand side, to obtain the next approximation,
. th
etc. If we let ’/,?) represent the result of the 9 iteration, we have
' _ _ . 19.14)
S N, Y v ¥ 7 Z Ny /7,9 9 ) o (
g — LB / <. . c ) , I @ wn AL
lil) o L r/O( A dicg) - / EJ’)*\HJ*@’;) C’(/ia 21’3))
( 2N il

We will now attempt to show that this iteration must converge in a finite
number of steps to the solution of the differential equation (19.9), for

equivalent initial conditions.

We first show that the iteration process itself converges in less
than v./v  steps (where V - the number of stimulus sequences, and ,-”-./’q'
the number of - -vectors for which /7 /! > 2 ) . On the first iteration, it
is clear that the 7" 's can only increase, since they start out from zero, and
are set equal to a non-negative quantity. But introducing this quantity for the

next iteration can only increase the ¢)'s from zero to 1l; it cannot cause any ¢

to decrease. Consequently, on the next iteration, the 7 's can again only
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increase, and similarly for each subsequent iteration. Since ’/r is non-
decreasing, ¢(ﬂf+ 'gfr) is non-decreasing, for al_l r . But 7"' can
change only when some ¢ changes, and each ¢ can change at most once
(from 0 to 1). But there are at most N/fN ¢ -functions, ¢(oc:‘) . If all of
these are initially zero, the system is already at a solution, and no further
changes will occur. Therefore, at most n < NﬂN @-functions can change,
and the process must converge in less than /\//6 N iterations.

”

t
Let the end result of this process be 7; for any unit a4, . We

: o : < . . .
now wish to prove that 7 is a solution of the differential eguation (19.9).

’

To begin with, we prove that '//‘r is a minimal solution of the

equilibrium equation (19.13).

Let 7’fu,r be any solution of the equilibrium equation. Then for
4

’r

the iteration process, we have 7“."(09 = Ej for all r andall fg;

Since the right-hand side of (19.13) is 2 monotone non-decreasing function

~
of 7 , we have
3

BRSO TS UL WLC S
¢ /5‘/.
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LR r ~ r re
Similarly, % < 7 , and hei.ce : < 9" . Hence Zi is
{

{(n)
minimal.

Now consider the differential equation, (19.9). As long as no ¢

changes value, all 3 functions are zero, and (19.9) simplifies to

Lh = DR, )9 1) - 87 @)
‘ ¢

i X5 46760 X oy #8006 )-8 10

7 Zx
- r
where o<£ (t) = A+ f/.r(t) . Thus, while the ¢ 's are constant, the
q 4 /
differential equation is of the form % =M=-87 , where

AP 7, 6t 2 rig) o)) o))

Thus, during this time, there is an exponential approach to the limit M/d ;
analogous to the solution discussed in Chapter 16 (pg. 355). Now suppose
at time tlﬂ one of the 4) 's changes. At this point, the last term in

(19.9) is infinite, and the solution is discontinuous, since the value of the
connections from the incremental set AA_, has just been added to 7:.'“

Consequently, the solution takes the form shown in Figure 53.
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My =N

d /
"7 (¢7)

Mﬂ ‘

Py e

o~ e ey

Figure 53 FORM OF SOLUTION FOR CROSS-COUPLED oc-SYSTEMS

where

M= Ny ) [@ 6 ('6") X Pg) g ) LA

kY _ 4
ocf(t,*) :ﬁf ,{LS(/;_/ g Mog, )}_# A" 1;& (")

The middle term of this expression represents the value of :f."L at time
t: - dt , just prior to the discontinuity. The magnitude of iy '/L.F
remains unknown, but we know that it must be non-negative, since it
consists of values of A-unit interconnections which began at zero and can

only have changed in a positive direction. As in the case of the iterative
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process, there are at most Nf,, N times, t*‘ , at which these discontinuities

1o
d h limit Mo > My M h luti i
can occur, and each new limi 5 =7 . oreover, the solution remains

monotone increasing, despite its discontinuities. This last conclusion can be
seen from the fact that the increment A*y"_p comes from the values of a set
of connections whose origins are now active for one more stimulus sequence
than previously. Since no previously active A-units have become inactive (all
¢ 's being monotone increasing) the values of these connections will not
diminish, and will, in fact, tend to increase. Thus the new limit for 7’£.r can

be no lower than its present value.

Ncw consider the first step of the iterative process. This yields

r
=

0!

differential equation. This means that if any gf changes in the differential

for the value of the first asumptotic level, Mo/d‘ , for all 7:." in the
equation prior to reachi.g the level Mo//(S , this @ must also change in the
first step of the iterative prccess. (If no ¢ changes prior to the level Mo/é‘
o3
thern no qS will ever change, and we are at a solution for both equations ). But
the new level, M’/(j , is a positive monotonic function of the ¢ 's, and the
r

next step of the iteration process, 7/4'(2) , corresponds to the level /\/)1/5‘

which would have resulted had every 7 actually attained its asymptotic level

W ; -
Mo/§ . Thus 7"&) 2 /. (¢°) for every r . Butfrom the same argu-
¢

- e . r r,, #
ment, it follows tha: 7:.(3) = XA (ZLZ ) , and in general, ?;'CA) 27 (t,fm)

r r ) .
Consequently, 7: > 7’,.{00) , and the solutions of the two equations are

indeed identical.

% It is assumed that M is not identically equal to & , in which case the
solutions might coincide only for ¢ =
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19.6 Analysis of Finite-Se¢ .ence . “ironmenis

The term 'finite-svquenrce envi, ~nment'! will be eed for any

system in which the stream of activiiy i periodicaly, interinpted, =ither by
. . * . . 5 Ot iemati of
actively setting all 4, to zero, or hy l..troducing sequences of nuil #i muaii of

sufficient duration to allow all A-unit aciivity to die out of its ¢ vn accord. The jat. ¢

Vo

ter - possibility exists only for systems i which the internal conrec*ion vi ves

are sufficiently small, or contain a sufficieal i.h:bitory component, to gucranice
that activy will, in fact, die away. Some idea oi tl¢ conditions for this to occu-
may be gained from Section 18.2, and Figure 47. For convenience (and hecause
it can always be realized, regardless of choice ot marameis r5) the interrupted
activity model will be considered here. In either ca.+, :inite-sequence
environments are directly analyzeable by the method ¢ Scction 19.5. Several
examples are given here, based on the same stimulus environment as in
Experiment 12. It will be recalled that this consisted of four stimuli, with
areas R =,2 , and intersections C,3 and CH:_/ , all other intersections

being zero. As in the example in Chapter 17, we will consider a binomial

perceptron with parameters « = 3 , et O , and ©&=2 , for all A-units.

EXAMPLE 1: Suppose the preconditioning sequence consists of an endless

repetition of the subsequence: § 5,55 / §5,5,5,/55,5,S, /.... , where
the symbol / is used toindicate points at which activity is interrupted. Then

for this environment there are actually four possible sequences to be considered
in the a.:nlysis, namely |

4, =(S,)

4, =(5,5,)

g, =(5,5,9,)

‘J; s (S, S;_ 53 S4>
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i

Nl occurring with probability % =.25 . The A -vectors for these tour

.
S

"”&\;kv correspond to the signals received from the terminal stimulus in
3

seqi®y e, and are listed in Table 9, together with their probabilities.

5
N3,
5N

AR ’«%@iistmg onuy of 1's and 0's represent A-units which will always
.%ﬁ 0
femialn waiie. e
LAY
\.\
S

.

ot N . . A ) .
The initial ’z,'—m\w{tmx for this experiment is precisely the same
N\

. 034,000
o ( .000 . 103 .000 .034
}

w034 .ooo\.\xa; . 000
.000 .034 .000%, 104
\
\}‘n -

Tt 1s :ound that no change occurs in this matrix for N%;]/S <767 I:Em»;,,z;\.;
~.

*thero. ore consider the case in which N, /?//é* = /60 . In the open-loop system

of Chapte= 17, the sequence of Experiment 12 yielded the terminal Q-matrix:

210 176 .034 .072
(176 .210 .072 .034
,034 .072 .210 176
..072 .034 176 .210

If we now compute the terminal matrix fo1 a fuilv cress-coupled system, from

Equation (19.14), we obtain:

.104 .000 .034 . OL'.‘\\‘
.000 .152 .000 .130C !
.034 ,000 .104 .000

.000 .130 .000 .152/

-442 -




/3-VECTORS FOR STIMULI OF EXPERIMENT 12

B

0000
0001
0010
0100
1000
0011
0rro
DY
120
Gio.
o
nitl
(o
1ot
jiio
H

0003
en2o
(304
3000
5303
3030
0602
0020
NG00
2000~
L20?
2073
J291
nies
2012
1020
2203
302
2050

(Parameters of A-units: X =2, y = 0)

P(8)

.064
.048
.048
.0u8
.0u8
.024
.0z24
L0y
024
.072
T2
.33
.030
.030
.030
.036

.001
001
.001
.001
.001
.001
.012
.012

012

|'\I2

“~
N8

,OIR

.027
027
.027
.027
.003
.003
.003

g

TABLE 9

.

NN
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3020
0012
0021
0120
0210

1240

200G

1007
2001
0§03
0301
1030
3010
0212
2120
0121
1210
202)
1202
10i2
2101
1212
2121
1112
1121
1211
!
0112
0211
1021
2011
1102
1201
1120

P(3)

.003
.003
.003
.003
.003
.03
Nl
. 003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.006
.006
.NNg
.00
.006
006
.006
. 006
.006
.006
.004




The only change which occurs in this case is that the set A, eains a larger
intersection with the set Ay - There is no tendency here for the A-sets
responding to adjacent pairs of stimuli to merge, as would be the case in a

four -layer model, or an open-loop cross-coupled network with zero transmission

times. This is shown even more strikingly in the following example.

EXAMPLE 2: For the same parameters as Example |, let us extend the basic

subsequence to 8 stimuli, using as the preconditioning sequence:

S/ 525152 53 545 3 ’/5/525/52535 32 / tr

1’4 47374

The sequences for this environment are now

d, = (S,) 4 = (5,9,55,5,)
4, = (55, 4 =(5555,55,)
(555 J =(5,55,5,5,5,)
4 =(5555,) 4 = (55,55.5,%5,5,)
Each sequence occurs with probability Py = .125 . The initial Q-matrix

again depends only ou the terminal stimuli, and takes the form:

/.104 .000 .104 .000 .034 .000 .034 .000

.000 .104 .000 .104 .000 .034 .000 .034

- . 104 .000 .104 .000 .034 .000 .034 .000
.000 .104 .000 .104 .000 .034 .000 .034

ol .034 000 .034 ,000 .104 .000 .104 .000
.000 .034 .000 .034 .000 .104 .000 .104

.034 . 000 .034 ,000 .104 .000 .104 .000

.000 .034 .000 .034 .0v00 .104 .000 .104
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For the terminal matrix (again with N, q/d = /60 ) we now have

/

/.104 .000 .104 .000 .104 .000 .104 .000
/.000 .174 .000 .174 .000 .174 .000 .174
- .104 .0C0 .174 000 .174 .000 .174 .C00
000 .i74 .000 .174 .000 .174 .000 .174
Toel T U104 ,000 0174 0G0 . 174 .000 .174 000
Lotg L 174000 174 .00C .174 .000 .174
104 000 174 .000 174 .000 .174 .000
\.000 .174 .000 .174 .000 .174 .000 .174/

This corresponds to an oscillating condition, in which each A-unit (after giving
its original unaltered response to the first stimulus of the sequence) responds
either 1,0,1,0, 1,0,l0r 0,1,0,1,0,1,0 to the remaining seven stimnli of

the sequence.

In contrast to previous models, there appears to he a failure to
associate successive stimuli, and an association of every alternate stimulus
instead. Actually, appearances are misleading here; a strong association of
successive stimuli is masked by the appearance of these stimuli in the test
sequence (which is identical, in this experiment, with the preconditioning
sequence). In other words, the perceptron '"predicts'' the A-set for the next
stimulus at precisely the time that this stimulus actually appears, and conse-
quently the effect of the prediction is not detected. The following experiment

reveals these ""hidden associations' in a striking fashion.

EXPERIMENT 13: Using the same four stimuli as in Experiment 12, the

perceptron is shown the preconditioning sequence S,,S,, S,, S, /
S, S;, S5, 54/. ... It is then tested with the sequence
S,, 0,0,0..., and the Q-matrix for all subsequences (from

both preconditioning and test sequences) is obtained.
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If this experiment is performed with Nc,'] § =100 , and all
other parameters as before, it is found that on presenting the test sequence
(S,50,0y.-.)the perceptron recapitulates the identical sequence of active

sets A, A,, A;, A, which would have been activated had the preconditioning

the system lapses into inactivity, since

%

sequence occurred in full. After A, ,

the preconditioning sequence isinterrupted at this poin.

19.7  Analysis of Continuous Periodic Environments

Up to this point, it has been assumed that the activity of the

perceptron is interrupted at least once every s stimuli. We now turn to the

case of a continuous, unbroken sequence of stimuli, where the activity of the

association system is allowed to run on without interruption. Tc begin with,

the case of a periodic stimulus sequence will be considered, where the pre-

conditioning sequence takes the form:
5, 5,55 ies 525555 e S

the period of the sequence being 7, . Such an environment can be considered
as being composed of a set of »m subsequences, each of length m + /

Specifically, we have the subsequences:

(5,5,5, ... 5»5,) ‘
5,5 ...5,5°5,)

N
4 |

4= (505, 5,5, ... Su)

Tais "hallucinatory recall' effect, in which the perceptron, cued by the
initial stimulus of the sequence, reproduces the identical sequence of iuternal
states which would have heen activited had the stimuli continued in tleir usual
order, :s suygestive of some of Penfield's obs=rvations on hallucinatory recall
of stereotyped sequences inducerd Ly electrical siimulation of brain foci in
epileptics (Ref. 68).
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Each sequence occurs with probability 1/» , and each sequence begins and

ends with the same stimulus.

Now since the preconditioning sequence is assumed to extend
indefinitely into the past, at any arbitrary time t , the antecedent sequence for

the first and last stimulus of any (m+/)-subsequence is ihe same; consequently

H 7 . ..
7. = 7’: for all ¢ . But this means that there are, in fact, only a finite

I3
number (m) of ¢ 's for any A-unit, a; , so that the steady-state value of

r
’/‘- can be computed exactly by equation (19.14), where the sequence ‘/r’ is
interpreted to mean the sequence Jr—f in the set of » subsequences specified
above.

Several special cases are cf particular interest. Consider first
the case of a steadily maintained stimulus, (S, 5,5 .- ) . Substituting in

(19.14), we have

1

o = Nall / ’ A

e U U 1) T A O <o)
7

and it is readily seen that the set of active units can never change from the

» 3 . . I3 . 3 , R

initial set, since this equation yields zero unless gb(ﬁ ) =0 for the first
¢

iteration. Thus for a steady stimulus, we have

\ TS
0, Q“(O)

A
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Next, consider the alternating sequence S, 5, S,S,.... . In this

case, (19.14) takes the form

- N ‘ o
1y = T |OEL 7iy) Dr @) 067 7i) 00 57
/,l/.
a2 ; ;o R
L3 Q\//j. v 'JAL'(})) ; /D(/J’J'/\ (p(ﬂd # Z‘/(;)) qj(ﬁd 1 2;(3))
/J'

In this case, if either 7 (/3[') or ﬁ//jf) = 1, 7»" will generally be non-zero,
and the system will tend to form a union of the sets initially responding to 5,

and >, (provided ., 7, # 0 ).

Finally, consider the stimulus sequence of Experiment 12,
consisting of a period of alternation of , and 5, followed by an alternation
of ., and ., , as described in Chapter 17. Rather than compute the
entire 20 by 20 Q-matrix for Experiment 12, we present here a '"'miniaturized
version' of this experiment, based upon the eight-stimulus sequence
employed in Example 2 of the preceding section. For the continuous environ-

ment, the eight sequences will be:
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(S, 52 Si 52 53 S4 53 54 5/) - (53 5453 54 51 52 5/ 52 53)

e
!

—_

Bs 2
li

N

=) @ N f ¢
= (‘»2 5751 53 S, 53 549 52) i (%; 53 54 51 5,2 5 52 53 S4>

3,
o~
!

A}

= IS C oo T N Y
o, (Jj 54 5152515, 5354 b3,

'E."

il
—
w
o~
25
[V
~J
(V'
L
v
Ung
3
a
{
o
()
b
%2

= (¢ ¢ C ¢ o ¢ .'")
Jg g O 22 9y 203 24 Iyg

It is found that in this experiment, there is no choice of para-
meters which will yield an increase in Dy n Qie "356 , and Q7£J without
producing a corresponding increase in the set of A-units responding jointly to
all stimulus sequences. It can also be shown that no matter how far the
period of the preconditioning sequence is extended (by increasing the duration
of >, 5, alternation and also increasing the duration of . S5, alternation)
the system will never be able to selectively combine the sets ./;‘-,, A:)) and
/'4«‘..1., Ay as in previous models. There is, nonetheless, a ''predictive' effect

which would be revealed if the stimuli were suddenly cut off, as in Experi-

ment 13.

From this example (and those of the preceding section) it is
clear that the condition for selective merging of A-sets for temporally
adjacent stimuli is not as sasily satisfied as in the four-layer system, or
open-loop systems with zero transmission time. Experimeni !4, however,
illustrates a simple modification of the preconditioning sequence by which

such a merger can be obtained.
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EXPERIMENT 14: The same four stimuli are employed as in Experi-

ments 12 and 13. The preconditioning sequence, however, takes
the form: §,5,5,5,9, 5 5, SZS,/ 5,545, 54_5453 53 54 54 53 S.a 5
repeated ad infinitum. The terminal Q-matrix is obtained as

before, for the twenty possible sequences of duration 21.

In this case, it is found that there will be a tendency for the

sets A, and A, to merge, and for the sets A, and A, to mergeina

s

separate ''cell assembly'. What happens here is that the A-units responding
to §, tendto be associated to the two most common successors of 5, in
the preconditioning sequence: namely, S, itself, and Sz . Similarly, S2

is associated both to 52 and S, . Thus, when 5, occurs at the start of
the sequence it tends to be followed (coincident with its second appearance)
by the combined set (A, yA,) . When the first S stimulus appears, A,
combines with the "predict'ed” A, set, and the combined (A” Az) set
tends to persist until the first occurrence of 5; , at which point it may
combine with the new A, set, or may become inactive, depending upon the
magnitude of N, 7/5 . In order to prevent the original set from persisting
indeflinitely (since each A-set tends to predict itself, on the following cycle)
Narl ¢ must be kept small enough so that the ¢ -components alone are
insufficient to activate A-units whose¢ /5 -components are zero. In this
case, only part of the original A-seté will be activated in the absence of the

actual stimulus, but a bias will still remain in the direction of the desired

combination of A-sets.

* The term ''cell assembly' seems appropriate here, as the sets which are
formed in the terminal state of a cross-coupled perceptron bear a close
resemblence in organization and functional properties to the cell assembly

concept proposed by Hebb, in Ref. 33.
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In general, if each stimulus which forms part «f an "event' can
occur with equal probability after any other stimulus in the same event, then
all of the A-sets responding to these stimuli will tend to merge, at least in
part, and will be evoked by any stimulus of the event-class. This is essen-
tially the same effect which was found for four-layer perceptrons in

Chapter 16.

Actually, with the g -vectors corresponding to those in Table 9,
(for A-units with only three retinal connections) the system is not well
behaved in Experiment 14 regardless of the choice of threshold and N, r}/é‘
With larger numbers of connections and the possibility of higher thresholds,
however, it seems likely that the desired effect could be obtainéd with the
preconditioning sequence given in the experiment. A 7 -perceptron (or a
" -perceptron) would probably be somewhat better behaved in this experi-
ment, as it would tend to inhibit the sets of A-units characteristic of the
first "event' once the second event began. In the o -system, there is a
strong tendency for all A-sets to merge whenever N, q/ﬁ is sufficient to

permit the merger of the desired sets.

19.8 Analysis of Continuous Aperiodic Environments

If the preconditioning sequence is not periodic, some sort of
approximation procedure must be used, if Equation (19.14) is to be applied.
Two possibilities suggest themselves: First, the aperiodic sequence (it it
is statistically uniform throughout) can be approximated by a periodic
sequence if the period is sufficiently long to encompass all likely juxta-

positions and short subsequences of stimuli. Second, we can consider all
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subsequences of length 7 , assigning a probability to each, and analyze the
system as though we were dealing with a finite-sequence environment, con-
sisting of the various m -sequences in an appropriate frequency mixture. In
this case, the analysis should converge to a correct solution as m becomes
large, provided the original sequence is statistically uniform. If the statistical
composition of the original preconditioning sequence changes over time,
neither of these methods are applicable, and it seems likely that accurate
solutions can then be obtained only by actually simulating the system and

observing its behavior empirically.

In the experiments which are of primary concern at this time, it
is always possible to assume a statistically uniform preconditioning sequence,
so that one of the two methods described above can be applied. In practice,
this problem is likely to be soluble only for relatively small numbers of
stimuli in the environment, as the Q-matrices rapidly become too large to
handle in currently available digital computers. For long stimulus sequences
and large numbers of stimuli, digital simulation remains the: preferred techni-
que, and this offers-the additional advantage cf being applicable to small
perceptrons or systems where the assumption of infinitesimal transmission
time is inadmissible. In the preceding examples, where theoretical values
(rather than empirical values) of (. ~wereused, N, was implicitly taken

s
to be very large.
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19.9  Cross-Coupled Perceptrons with Value-Conservation

The two types of value-conserving systems, o -systems and

[' -systems, which were considered in section 16.6, are also of interest

in cross-coupled systems. The ['-system, which tends to strengthen

connections to the A-set responding to the most likely successor of the
present stimulus, while developing inhibitory connections to the A-units
responding to unlikely successors, appears to be the more promising of the
two. In most environments, however, both systems will probably show
similar phenomena, provided transitions between stirnuli can occur symmetri-
cally in either direction. The analysis of the 9/ -system, which is somewhat

more familiar from previous work, will be considered first.

19.9.1 Analysis of 7 -systems

In the 7 -perceptron, the total value of the set of input connections
to each A-unit is conserved. Specifically, (assuming the system to be fully

coupled) the change in the value of connection ,o(:(}. is given by

. _ K",l\: )'*/'_— —.“’—' S—‘ N , , g
A \/’j - af’r' (v, [d,' (Z 7’) Nﬂ b/“_‘ ai“ (t "7):‘ f)d t (19. 15)
Instead of (19.19), this leads to the differential equation:
f/ v . :
L= Z (u_},r,(z )-Q,0)Q,,(t)

(19.16)

= 3a 0+ ) -ty ) a1t )
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Since § w7 Q. Q, -may be negative, the former proof of convergence |
again breaks down, since 7" need not be monotonic. As in the case of the
four-layer system, the approach will be to try to obtain a time-dependent
solution for the o 's . The task is complicated in this case, however, by
the presence of the unknown quantities A" 7:."(1‘) in the equation, which

we have not hitherto had to evaluate.

For the 7 -system, any equilibrium equation must be of the

form
Y=L Y B ey - 0, Q,]
! (19.17) -
NIL . / rl
=5 ; R ¢(o<f)@>¢)g.)@@<;)¢@,) DAY ~
=. ME/Qr(A*ﬂ
)

Where A= set éf active A-unit sets, A;’ , for which the value of 7.,/_F(oo)

is computed. As long as all ¢ 's remain fixed, the #'s will tend

exponentially towards such an equilibrium condition , as in previous models.
X

Now consider the set of units whose ¢ 's change value at time t&

We wish to find the asymptotic value of the change in ’)Er due to adding or

subtracting this set of active units to the set A, attime t; . This is
equal to the difference between the asymptotic value of ’):.P based on the new
set of active units A, (ZL;;) and the asymptotic value based on the old set

of active units A . (“t;_’) - Specifically, from (19.' 17), and wi th an

obvious extension of previous notation,
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With this equation for the asymptotic value of the ""incremental
set' of A-units which become active (or inactive) at time t; , it becomes
possible to compute the time -dependent solution in much the same manner as
for the four-layer perceptron. To begin with, we obtain the functions g;
(defined in equation 16.23) for all & , and thus determine the next ocy
for which ¢(°<46,) will change. This gives us the values of gb(d;:(lf;))
which are required in equation (19.18). We then compute the actual value
of A f;fp(f;) as follows. The contribution, A" 7’; , being composed
of a number of individual values, /V;ﬂ- , will approach its asymptotic value
exponentially, with the same time-constant as the 9 's. Thus, if we can
determine the value of the set of contributing connections at the start of the
interval (time t‘:_/ ) we can determine its value at time t; . Now the
value at i':_, is simply the sum of the "';I(tz,) for all 3 such that é(ocjrl)
changes at t; . We will use the notation A 7{’,’(2";) for this starting

value. Specifically,
-
/

8,7 (8)= 1, YR Ble t6)) - bl . ))] v ()
2

% To avoid computing «(¢) , an approximation is required, e.g.,

"g'[(t) BV % /v}‘“(t) =0.

(19. 19
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Then, by analogy to {16.24), we have

8 8 (19.20)

# * » L * * N \
iy ME ) s (M AL, e ey

# . I
Thus, the complete solution for 7/,/‘ at time tx (including the discontinuity
L

at the terminal end of the interval) is given by:
rty 2 M MR
)= -

/
FYany r n_’ VInN [rAn_' . "
R )( My (A% ]«:S % W) A -0 19 21)

The value of the dicontinuity time, t; , is obtained as before, from

equation (16.25).

This completes the analysis of the cross-coupled 7 -system.
While no cases have actually been computed at the present time, it seems
likely that this system will generaily be better behaved than the o¢-system,

particularly in such problems as Experiment 14, where there is a tendency for

all A-sets to merge under « -system dynamics.

19.9.2  Analysis of [ -systems

In the ["-system, where the value is conserved over the set of
output connections from each A-unit, the change in the value of the connection
<. . is now

tr

(l )

R

Aw., = a;‘ (t—r)[ (t) - A’T a, t)]rzAt (19.22)
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This leads to the differential equation and equilibrium equation, respectively,

d;;,r _ ) ¥ _ _ n I AW ry, =
A Qq;@ﬁmé(r) 0,t)| Q)07 0 28I (19,

r N, #

= ! ) —

7. (@) ——'La ) A [¢( ) QJ Q},r, (19.24)
f/

From these equations, a solution for 7{"”(2,::) can clearly be computed

along the same lines as in the previous section, for the 7-system.

Specifically, the asymptotic value for the connections from the difference set

takes the form:

B 85 )6, )
Z P56 -, ld))@( (té ﬂ

A, 7/4'r (f;) and ({- ) are computed by equat1ons (19.19) and (19.20)

(19.25)

without any modificatlon, so that the final solution can be obtained as before

from Equation (19.21).

Due to its apparent superiority as a predictive system, and since
it appears to have the same advantages in stability of the A-set organization
as the 7 -system, this model seems likely to be the most versatile system

analyzed thus far.

19.10 Similarity Generalization Experiments

The consideration which first drew attention to the importance
of cross-coupled perceptrons was the prediction by Rosenblatt (Ref. 85) that

such networks would be capable of improving their performance in similarity
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generalization, as a result of prolonged exposure to an environment in which
stimuli are more likely to be succeeded by their transforms than by unrelated
stimuli. In Chapter 16, it was shown that a suitably organized four-layer
perceptron has such a capability, and the above analysis shows that for
sequences in which the activity of a cross-couplied perceptron is interrupted
after every other stimulus, its performance should be equivalent to the four-

layer model. Thus the original prediction appears to be upheld.

The mathematical analysis of cross-coupled networks has been
completed too recently to permit detailed examples of similarity generalization
to be worked out at this time. A series of simulation experiments have been
completed, however, employing a program written by Trevor Barker for the
IBM 704. In this program a fully coupled network of 102 association units is
represented, with ¢ -system dynamics. The model differs from those
analyzed above, in that the values do not decay. This leads to ''instability' of
the system (a tendency to go into terminal oscillatory modes with massive
A -unit activity, unrelated to the stimuli which are presented), unless some
additional measures are takento limit the growth of the connection values. The
program was therefore modified f{or bc;Llnded values. In order to prevent the
tendency of the ¢ -system to turn off most of the initially responding A-units
after the first few preconditioning stimuli, a further modification was
included to permit half-integer values for 6 . Thus the values of the

cross-coupling connections have no effect until the magnitude of 7 1is at

least equal to I/Z
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Even in this modified program, performance is considerably
poorer than might be expected of the decaying value models, since the system
ultimately goes to a saturation condition, with all values either at the upper
or lower bound. Prior to this saturation state, however, (and to a lesser
degree even in its saturated condition) similarity generalization can be

successfully demonstrated, as in the following experiments.

Figure 54 shows the results of two experiments, with five
excitatory and five inhibitory retinal connections to each A-unit, 6 = 1.5,
n= .005 , and an upper bound of .2 for all values. In each case, the
preconditioning sequence consisted of random stimuli, alternating with their
transforms. The transform, T(S) , consisted of a displacement of §
by half the width of the retina. The retina itself was a 4 by 36 mosaic
(144 points), and all stimuli covered one fourth of these points. In the first
experiment, the preconditioning stimuli consisted of random ''salt and pepper
patterns', in which any combination of points is equally likely. In the second
experiment, the stimuli were constructed by a ''"blob generating program' which
produces coherent, but randomly shaped patterns such as those illustrated in
the figure. The test stimuli, in each case, consisted of the same set of ten
coherent patterns (rectangular designs). After being exposed to the pre-
conditioning sequence 5, T(S,), o T(52>) 53 , TeS,), - - -, activity of
the A-system is interrupted, and a G-matrix is computed for the twenty

sequences:

P// = S:S: TM/\: T(SI>T(SI)

S. S TKJO)= T(SIO) T(SIO)

X
"
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This G-matrix indicates which of the ten transforms would be identified
correctly if the perceptron were trained to recognize their images, by means
of a single reinforcement. Sequences of duration 2 are used,to provide time

for impulses to propagate over the cross-connections before testing the

response.

The curves sh 'w the mean performance of ten perceptrons over
the set of ten test transforms, as a function of the number of preconditioning
stimuli. In the case of the coherent stimuli, note that learning is both more
rapid, and saturation is reached more quickly than with the random stimuli
(where the saturation condition has not been reached even after 5000 pre-
conditioning stimuli). While the peak performance level is less than .60, a
statistical evaluation of the data reveals that the trend is definitely significant.
All ten perceptrons, individually, showed a trend in the expected direction,
so that the chance of obtaining these results accidentally wculd bc less than
.001. It should be noted that since the expected generalization coefficient,
?ij , from a stimulus to its disjoint transform is negative {ina y -system)
these pei'ceptrons had to overcome an initial negative bias before achieving

even the '""chance' level of 50% correct identifications.

These experiments confirm the predicted tendency of cross-
coupled perceptrons to generalize on the basis of similarity, in a suitably
organized environment. They also indicate the advantage of coherent over
random stimuli, which is more pronounced in larger retinas than that
illustrated. Doubling the number of retinal points would virtually eliminate
the trend which is found for random stimuli, while the coherent stimulus
curve would be relatively unaffected. .All of these results are consistent
with the laws of similarity generalization which were tentatively proposed in

Section 15.4.
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Until further empirical studies are completed, the theoretical
results obtained for cross-coupled systems should still be interpreted with
caution. There is at present no knowledge of the variance in performance
over perceptrons, and how this relates to the size of the system; nor can
we estimate the effects of finite stimulus sequences, in which the assumption
of an infinitesimal rate of reinforcement per stimulus is not fully justified.
The equations of the preceding sections representlimiting behavior for large
values of N, , very gradual memory modification, and very long training
sequences. The assumption of large N, can be obviated by writing the
equations with empirical 5 -vectors measured for a particular perceptron,
but in this case the results can be generalized onlv by means of an empirical
sampling procedure, with many such perceptrons. The given eéua-
tions will probably be found to yield correct q.alitative results, but

considerable work is still required to test their quantitative accuracy.

19.11 Comparison of Cross-Coupled and Multi-Layer Systems

In similarity generalization experiments, it has already been
observed that there is a marked similarity between the performance of the
four-layer perceptron of Chapter 16, the open-loop cross-coupled system
of Chapter 17, and the closed-loop cross-coupled systems considered above.
All of these systems are capable of learning to associate patterns which occur
frequently in temporal succession, and abstracting the principle of simi-
larity from a transformation sequence (in which stimuli alternate with their
transforms). All of these systems will tend to work better with coherent
patterns than with random point patterns. In all cases, the constant N, ’]/6

determines the nature of the terminal G-matrix which is obtained, for a
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given environment. Actually, an exact equivalence is found between the
performance of the fully cross-coupled system in finite-sequence environ-
ments, with sequences of two stimuli, and the performance of the open-loop
system of Chapter 17 with 7 =] . Suppose the system of Chapter 17 is
extended to include an infinite number of A-sets, each with identical connec-
tions from the retina, and with variable connections to each unit in the .A th
A-set from each member of the £-/ ta A-set (and allowing unit time delay
in transmission). It can then be shown that the states of the ,&th A-set for
the first £ stimuli in the sequence will correspond exactly to the states of
the equivalent fully cross-coupled model (having all S-A connections equivalent
to those in the open-loop model). Thus, the fully cross-coupled model,

considered through all time, is equivalent to the output of an infinitely extended

open-ioop model, of the type discussed in Chapter 17.

While these similarities would lead us to expect basically
similar behavior in most problems for these different types of systems, some
noteworthy differences o exist between the cross-coupled system and multi-
layer systems with finite numbers of layers. First of all, there is an inherent
sequence-dependence in the cross-coupled model, which makes its present
state a function of the recent succession of events, (i.e., stimuli) rather
than just the last event to occur. This means that all creoss-coupled
systems have some capability for temporal pattern recognition, even without
variation in the transmission times of the input connections. Secondly, the
cross-coupled systems are likely to reach their terminal condition more
rapidly, and with initially accelerating rates of adaptation, since the differ-
ential equation depends on changes both in the transmitting and receiving

sets of A-units, while in the four-layer model, the differential equation
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depends only on changes in the receiving set, the transmitting set being fixed
for all time. The dependence on both receiving and transmitting sets makes
the cross-coupled system more subject to '""instability' phenomena, and

probably tends to reduce the "'dynamic range' of the system (as a function of
N n(/é‘ ) in most cases. These phenomena have not yet been stuti;.‘?'ied

sufficiently to present conclusive quantitative results at this time.

A more important difference than any of the above may be
potentially present, although this remains in the realm of speculation at
present. In a value-conserving cross-coupled perceptron, where there is
the possibility of developing pronounced inhibitory interaction between A-sets,
there is a tendency to develop ''cell assemblies' (in Hebb's sense), and these
cell-assemblies tend to rival one another for dominance at all times. It
seems possible that such a phenomenon may provide a basis for figure-
ground separation in complex sensory fields, where it is desired that the
system attend to one object, or component of the input situation, and ignore
the remainder. This will be discussed further in Part IV. If such an effect
can be demonstrated, many of the remaining problems in the design.of a

perceiving system would be solved.
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20. PERCEPTRONS WITH CROSS-COUPLED S AND R-SYSTEMS

A number of interesting effects may be obtained by cross-coupling
the S-units or R-units of a perceptron. Several such systems are considered
briefly in this chapter. The first section deals with cross-coupled sensory
systems; the second section deals with cross-coupled R-systems. Detailed
analyses are not presented here,although several analytic studies are

available in the referenced literature.

20.1 Cross-coupled S-units

If the sensory units are arranged in a two dimensional array,
or retina, then it has been proposed that inhibitory interconnections between
each S-unit and its nearest neighbors will tend to inhibit activity most
strongly in the center of a field of illumination, and Jess around the edges.
Such a system should lead to accentuated edges or boundaries for a visual
pattern, reducing the relatively redundant information coming from interior
regionsi:: Systems utilizing this principle have been proposed by Taylor
(Ref. 99), by Inselberg, Ldfgren, and von Foerster (Ref. 4), and byé
number of others. The Inselberg-Lofgren-von Foerster treatment includes
a more detailed quantitative analysis than was hitherto available, including

cases in which the probability of interconnection of two units is a Gaussian

function or an exponential function of the distance between them.

While it appears that contour detectors can indeed be constructed
by this means, it should be noted that some information is lost in the

process: namely, the indication of the direction of the illumination gradient

* See also Chapter 23, on visual analyzing mechanisms.
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across the contour. Thus if a square patch of illumination is operated upon
by the network to yield a square outline, there is no way to tell whether
the inside of the square was light and the outside dark, or vice versa. The

contour -detectors proposed by Rosenblatt in Ref. 79, whkich consist of

A -units with circular or elliptical distributions of origin points, with
slightly different centers for excitatory and inhibitory origin clusters, still

%
preserve this gradient information.

A somewhat more interesting possibility has been demonstrated
by Inselberg, et all, if three layers of units with anisotropic connections are
superimposed on one another, with a rotation of the axes of symmet.ry‘b}-r 60°
in the successive layers. With such a system, it appears to be possible to
construct a network from which there is zero output from a straight-line
stimulus (regardless of its orientation) but a non-zero output from a curved
line. Such systems clearly deserve more study as possible stimulus analyzing

mechanisms for reducing the input data to a perceptron.

Systems with excitatory interconnecticns between S-units are of
relatively little interest, as such a network would generally lead only to a
spread of activity from the stimulus region. The only useful function which
such connections might have would be in smoothing irregular or broken
images, by filling in holes and gaps; such an application, however, seems

to be of questionable utility at the present time.

20.2 Cross-coupled R-units

Inhibitory interconnections between R-units may be useful in
several ways. One application is to guarantee that no more than one R-unit

can be "'on'" at any time. For this purpose, all R-units are given inhibitory

% See also Hubel, Ref. 113, for relevant biological evidence.
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interconnections to all the others; whichever unit first goes on, inhibits all
the others, holding them off. Such a system will tend to '"hang up' in this
state, until the positive signal to the first R-unit is reversed, permitting
some other unit to come on. If the speed of response of an R-unit is
proportional to the magnitude of its input signal, such a scheme can be used

to select the R-unit with maximum input from a given stimulus.

In R-controlled reinforcement systems, inhibitory connections
between R-units may sometimes be employed to guarantee that a unique
response is associated to each new stitnulus in succession. Suppose there
are four stimuli, which activate disjoint or nearly disjoint sets of A-units.

Let there be four R-units, with inhibitory connections as follows:

— e
2 p/'"’/;:'_'_‘-'_—___\-_\"\x' Ir h‘\'\- P
A s I - - -':: *
[ 2N T

In this scheme, unit R, inhibits (absolutely) all successive R-units

® Rivg » v v )

initially positive signal to all R-units, only R, can goon. With an

R Now if stimulus S, occurs, and transmits an
R-controlled value-conserving system (in which the sum of values over all

connections is held constant) S, will then develop an excitatory signal to

Rl

we have assumed essentially disjoint A-sets) the valuc-conserving system will

{.

,» and negative signals to all other R-units. At the same time (since

guarantee that the R, response generalizes negatively to all other stimuli.

, but will try to turn

Thus, when 57 occurs, it will tend to turn off R’

on RZ >R3 and f?4 . Of these, only RZ can remain on, due to the
inhibitory coupling, so that 5, (or whichever stimulus occurs second in the
sequence) will become associated to R’z . Similarly, 53 is associated to

R, » and S, to R,
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This scheme becomes somewhat less trivial if it is applied to
the four-layer perceptrons of Chapter 16, subsequent to a preconditioning
sequence in which the perceptron has learned to associate a unique A-set
to each similarity class of stimuli in a given environment. The above
method can then be employed to assign a unique response to each class of

stimuli (provided the terminal A-sets have sufficiently small intersections).

While the interconnection schemes proposed here for S and

R-units are occasionally useful for control purposes, they do not introduce

any fundamentally new properties of importance. The most striking pheno-
mena to be found in cross-coupled systems are the similarity generalizing
capabilities of the cross-coupled association systems -- with the tantalizing

 possibility of a figure-ground mechanism still to be investigated in future

work.
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PART IM

BACK-COUPLED PERCEPTRONS AND PROBLEMS
FOR FUTURE STUDY




21. BACK COUPLED PERCEPTRONS AND SELECTIVE ATTENTION

In Parts II and III of this volume, we have tried to establish the
fundamental properties of two topologicai classes of perceptrons: series-
coupled and cross-coupled systems. While the possible configurations of
these two types of perceptrons have by no means been exhausted, the most
general forms of series-coupled and cross-coupled networks appear to be‘j
sufficiently well understood so th~t their principles can now be applied to the
analysis of more elaborate systems. The most general network is achieved
with the addition of back-coupling (Definition 26, Chapter 4), so that layers
of units which are relatively remote from the sensory end of the perceptron
can modify the activity of layers which are relatively close to the sensory
end. Given this additional mode of coupling, then virtually all perceptrons
of interest, however elaborate their structure, can be regarded as compounds

or modifications of the types previously considered.

The modulating effect of back-coupling upon the behavior of a
perceptron will be considered qualitatively in this chapter. It will be seen
that while the analysis of such systems can frequently be carried out in terms
of already established principles, their behavior possesses a new order of
sophistication. In particular, the psychological phenomena of selective
attention and ''cognitive set' now begin to emerge. A related exposition of

these ideas can be found in Rosenblatt, Ref. 79, Chapter X.
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21.1 Three-Layer Systems With Fixed R-A Connections

21.1.1 Single Modality Input Systems

The first case to be considered is the class of three-layer
perceptrons having fixed-value connections from the R-units back to the
A-units. For simplicity, it is assumed that there is no cx:oss~coupling
within any of the three layers. Such a perceptron with two R-units can be

represented by the symbolic diagram:

where solid arrows represent fixed-value connections, and broken lines
represent variable-valued connections. In particular, assume that there is

a connection from every R-unit back to every A-unit, half of these connections,
chosen at random, having the value +1, and the other half having the value -1.
In the following section it will be assumed that the R-units are of an "on-off"
variety (having the outputs 1 or 0, rather than +1 and -1) although analogous
effects can be found for simple R-units. It is also assumed, for the sake of
avoiding impossible closed-loop situations, that all connections have a short

time delay, 7T ; a stimulus, however, is generally assumed to be held on

the retina for a time T >> 7T

-472-




The signal 'OT‘L which is fed back to an A-unit ¢, from the

response unit r is given by the linear function

* *
&=l T ey
Thus ,o;i is equal either to #~.; or 0, deperd ing on whether r*= | or
0 . The effect of these feedback signals on the set of A-units responding to

a given stimulus is shown in Figure 55. The symbol 4 is used to represent
the component of the input signal, o , which comes to the A-unit from the
retina. It is assumed that there are two R-units, so that there are four
disjoint sets of A-units with roughly NQ/4 units in each set, corresponding to

the four possible combinations of 2, and #. ; . These sets of
2

ol ¢

A -units are represented by the four quadrants of the diagram. The circles
indicate the values of /3‘. received from the given stimulus, in relation

to the threshold, 61- . The A-units in the innermost circle, for which

/4 25 + 2 , will always be on when the given stimulus occurs, regardless
of the condition of the R-units. Those units for which 8< 8 < 9+ 2 will
be on except when they receive an inhibitory signal from both R-units simul-
taneously. The units for which A = g§-/ must receive a net excitatory
signal from one or both of the R-units in order to go on, and those units for
which 4 = 6-2 will only go on (in the presence of the given stimulus) if
they receive an excitatory feedback signal from both R-units at once. Units
for which & 4 6-2 will never respond to this stimulus. The magnitudes
of these sets can be calculated from tables of Q-functions (c.f., Chapter 6

and Reference 87). The shaded area in Figure 55 shows the sets which

respond to the given stimulus when (rf , r‘:) =(l,1)
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NET FEEDBACK = NET FEEDBACK =

0 FROM (1,1 +2 FROM (1,1)
+1 FROM (1,0 +1 FROM (1,0)
-1 FROM (0,1 +1 FROM (0,1)

0 FROM (0,0 0 FROM (0,0)

NET FEEDBACK = HET FEEDBACK =

-2 FROM (1,1) 0 FROM {1,1)
-1 FROM (1,01} -1 FROM (1,0)
<! FROM (0,1 +1 FROM (0,1)
0 FROM (0,0] 0 FROM (0,0)
Vr, i = Ur, g ==
Vf';i- = = | L—‘rz II = 4|

Figure 55 EFFECT OF FEEDBACK ON ACTIVITY OF A-SET, N RESPONSE TO A GIVEN
STIMULUS, FOR PERCEPTRON WITH 2 R-UNITS. SHADING SHOWS ACTIVE
A-SETS FOR THE RESPONSE STATE r/, r,m = (1,1).
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Now suppose there are two stimuli, 5  and 52 .S, s
g 5 ' g »* * 0\ _ 9 ~ 0
trained to give the response combination (rl ) Ty ) -(I,O) , while 5, is
associated to the response code ('O, /) . We assume that the retinal sets

representing the two stimuli are completely disjoint. Having trained the
perceptron, let us now present both stimuli simultaneously (i.e., a composite
image, S/ (_/S2 , 1s projected on the retina). Under these conditions, a
series-coubled perceptron might equally well give the response combinations
(0,0),(0,1), {1, 0) or (I,1) . The present system, however, will
tend to respond either with (/, 0) or with (O, /) . In other words, it
will tend to correlate those R-states which go with one of the two stimuli,
rather than giving a partial response to each. This can be understood by
reference to Figure 56, where the A-sets responding to each of the two
stimuli are shown. For convenience, the sets responding to S/ are
assumed to be disjoint from the sets responding to 5, , and the diagram
is simplified by assuming that the set which is active for the composite § S,
stimulus (in the presence of a given R-state) is equal to the union of the sets
responding to §, and S5, alone. Tktis last assumption is not generally

warranted, but the qualitative conclusions reached will still be correct. The

shading shows the reinforced sets for 5, and 52

At the moment that 5/ S appears on the retina, both R-units
will be off, so that there is zero feedback to the A-systern, and the total
signal coming to each R-unit from the A-system will be approximately zero
(consisting of a positive signal from one stimulus, and an approximately
equal negative signal from the other stimulus). Suppose initially, both
R-units go oh. In this case, the sets of A-units responding when [Q*:(l,{)

will become active, and the total signal to each R-unit will still be approxi-
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Figure 56 A-SETS RESPONDING TO THE STIMULI S, AND §,, FOR THREE RESPONSE
CONDITIONS. SHADED AREAS SHOW REINFORCED SETS, AND DOUBLE
HATCHING SHOWS REINFORCEMENT WHICH GENERALIZES TO THE
CONDITION R* - (1,0).
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mately zero, so that the response state is unstable. Alternatively, suppose
the R-state goes to (1,0 ) . In this case, the signal to the R-units comes
from the double-hatched regions of the Venn-diagram in Figure 56, and the
S set becomes '"dominant''. If this occurs, the response (1,0) will
tend to remain stable, and may even persist after the stimuli are removed
(provided some of the A-units have thresholds &/ ). Similarly, if the
R-state goes to (0,1) , thenthe S, setbecomes dominant, and its

response will tend to persist.

If either stimulus has been trained to give the response (0,0)
in the above experiment, the R-units will tend to ""hang up' in their initial
condition, and no other response can ever occur to the joint stimulus SI S,
On the other hand, it is possible to produce an oscillating or cyclical response
by training a given stimulus to give the response {(1,1) when the present
response is (0, 0 ) , then conditioning the (1, 1) set to give the response
(1, 0), conditioning this set to give (0, 1 ) , and finally associating the
response ( 0, 0 )to the A-set responding for (0, 1 ). Inthis case, as
long as the stimulus is held on the retina, the R-units will cycle through the

four responses in succession.

The important tendency which has been demonstrated for this
system is a tendency to correlate the output of the R-units so that they
all apply to a single stimulus, when a composite stimulus occurs at the

retina. This now provides the basis for the following experiment:
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EXPERIMENT 15: Using a four-R -unit perceptron, and a universe of

squares and triangles of equal area in all positions on the retina,
train the system to give the responses (r‘,*, f‘: ) = (}, 0) fora
triangle, and (0,() for a square; (r*;, r‘:) = (/,0) for a
stimulus in the top half of the retina, and (O, 1) £ stimulus
in the bottom half. After training with an error-cor. ..tion
procedure, test the response of the perceptron to the stimuli

54( = triangle in the top half of the field and square in the bottom
half, and S, = square in the top half with triangle in the bottom

1
halfl.

In this experiment, the first pair of responses are used for square/
triangle discrimination, and the second pair for top/bottom discrimination.
For the time being, assume that the error correction procedure is modified
by forcing the correct R” condition whenever a correction is applied. ( This
assumption will be dropped in Section 21.2.) It is predicted that a back-coupled
system, organized as above, will tend to give one of the two responses
(1,0, 1, 0) or (0,1, 0, 1) for stimulus S, (signifying "triangle. top"
or '"'square, bottom',respectively), but will give one of the two responses
(1,0,0, 1) or (0,!,1,0) for stimulus S%_ (signifying ''square, top'' or
"triangle, bottom'). In other words, the system should give a consistent
description of one of the two stimuli, in terms of shape and location, and
ignore the other stimulus; it will not name the shape of one and the position
of the other, even though both shapes and both positions are simultaneously

present.

-478-




That the predicted effects will tend to occur can be seen by
referring to Figure 57, where it is assumed that the S, combination
{top triangle and bottom square) occurs. Reinforcement is shown by cross-
hatching. The relative sizes of the intersections in the Venn diagram are
drawn to suggest the relative intersections of the A-sets for the response
states of interest. Note that the set responding when R {1,0,0, 0) tends
to have a relatively large intersection with the (I, 0, I, 0) set, due to the
fact that three of the four R-units are in identical states. The combined
intersection of the (/. 0, 0,0) set with the sets which are reinforced to
yield the ''top' response (i, 0) on P, and r, is greater than the combined
intersection with the sets whicl were reinforced for the ""bottom'' response.
If the triangle first becomes dominant with respect to the r,,r, pair of
responses (yielding the condition 1,0,0,0) the activated set which has
been most heavily reinforced, shown by cross-hatching, will now tend to
evoke the ''top' response from ry and ry » since the ''top triangle!! set now
carries considerably greater weight than the ""bottom square' set. Thus a
consistent configuration on a!l four R-unils is induced. If (0,7,0,0) should
occur, however, the system will have an opposite bias for r, and ¥, , tending
to evoke the condition (O, I, 0, /) It 5,(_1‘,. should occur instead of S, , the
biases will be found to favor the (1,0,5,1) or (0,/,1, 0) conditions, as

predicted.

Experiment 15 illustrates the simplest conditions under which
''selective attention' might be said to occur in a percepizon. In a complex
field, with more than one trained stimulus present, rather than giving a
conflicting mixture of responses, the perceptron tends to pick a single

familiar "object' and respond to this object to the exclusion of everything
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Figure 57 SETS AFFECTING THE TRANSITION FROM THE RESPONSE STATE (1,0,0,0)
WHEN THE COMBINED STIMULUS "TOP TRIANGLE" AND "BOTTOM SQUARE" OCCURS.
SHADING SHOWS REINFORCED SETS, AND THE MEASURES OF THE INTERSECTIONS
WITH THE (1,0,0,0) SETS ARE DENOTED BY THE LETTERS a, b, c, AND d.
THE VENN DIAGRAM S DRAWN SO AS TO EMPHASIZE THE PROBABLE MAGNITUDES

INVOLVED.
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else. By adding additional responses, a complete description might be
obtained of the shape, size, position, etc., of a single object in the field.
The particular object which is selected, however, depends on chance factors,
such as the relative amounts of reinforcement which have been applied to
different A-sets, or momentary noise within the network. In the following
section, it will be shown how a stimulus in a different modality, such as a
spoken word, can be made to direct the attention of the perceptron towards a

selected object or region in the visual field,

21.1.2  Dual Modality Input Systems

The perceptron which is illustrated in Figure 58 is similar
to the one which was described in the preceding section, except that it
possesses two sensory input systems, one visual (a retina) and the other
auditory (e.g., a filter system). There is a set of A-units for each of these
input sets, designated A,  for the visual association system, and A, for
the auditory association system. Again, there are four R-units, each one
receiving variable-valued connections from all A-units in both sets, and
sending a set of fixed value connections back to all the A-units. As before,
half of the feedback connections from each R-unit are assumed to be excitatory,

and the remainder inhibitory, with values 1 |
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Figure 58 ORGANIZATION OF A DUAL MODALITY °ERCEPTRON, WITH 4 R-UNITS
(BROKEN LINES INDICATE VARIABLE-VALUED CONNECTIONS)

With this system, the following experiment can be performed:

EXPERIMENT 16: Using a dual-modality input system (visual and

auditory), with four R-units, train the perceptron to distinguish
square/triangle and top/bottom, using the same code and

stimuli as in Experiment 15. Then, selecting four discriminable
audio-patterns, SQ, TR, T, and B, train the perceptron by

means of the audio-input to associate the responses for '"square',
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"triangle', 'top' and 'bottom'' to these four stimuli. In testing
the perceptron, a composite visual stimulus, consisting of a
triangle in the top half of the field and a square in the bottom
half, is used. Simultaneously with the visual input, the audio-
pattern SQ, TR, T, or B is presented, and the response of the

perceptron is observed for each of these four conditions.

From the discussion of Experiment 15, it is clear that the
visual section of the perceptron will tend to give a consistent response of
(1,0,1,0) or (0,1,0,1) , representing 'top triangle' or ""bottom square'',
respectively. The effect of adding the audio-stimuli is to add an additional
bias to the R-units, favoring one of the four '"concepts'", square, triangle, top,
or bottom. For example, if the TR stimulus is applied (which has been
independently associated to the composite response }”,*, r‘; =/,0 ) there
will be an auxiliary positive signal to r, , and an inhibitory signal to 1, ,
coming from the A set. There will be no bias introduced on "y and s
Consequently, the system will be biased to give the initial response

(1,0,0,0) , which we have seen tends to transform itself into the stable

condition (1, 0,1, 0) for the given stimulus.

Thus the results which are predicted {or Experiment 16 are that
when the audio-pattern TR is given, the perceptron will give the composite
response indicating the shape and position of the triangle; when SQ is
presented, the perceptron will indicate the shape and position of the square;
for the audio-input T , it will indicate the shape and location of the top
visual pattern; and for B , it will indicate the shape and location of the

bottom pattern. An audio-command can therefore be used to direct the
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attention of the visual system to a specified location or a specified shape,
and the output of the pérceptron will be a consistent description of the indi-

cated object.

While it is possible by means of the above procedure to assign
"'names' to visual objects or events, and direct the attention of the perceptron
by means of these names, it should be noted that the association is actually
much too complete for this to serve as a model for linguistic "naming behavior'.
For the perceptron, there is no difference (at the response level) between the

name for an object and the object itself. Thus the audio-symbol TR and the

visual image of a triangle both turn on the same response combination
(1,0,..) in the experiment considered above. If it is desired to retrain

the system to associate some other visual pattern (say, 'trapezoid'') with

th'e TR symbol, it is necessary to completely eliminate the previous asso-
ciation of triangles to (1,0,..) and train trapezoids to give this response
instead. Words and visual patterns are part of the same conceptual class, for
this perceptron, and cannot be re-associated as distinct entities, but can only
be used as raw material for building up new conceptual classes. The distinction
between the name and the visual object becomes important in practice if we
wish to tell the perceptron to 'look for the square' when there is no visual
square present. The audio-symbol "look" might be used to start an auto-
matic scan or hunting process, but to stop the process when a square is
found, the perceptron must be capable of distinguishing between the audio-
symbol for "square' (which it must remember for the duration of the search
process to tell it what it is looking for) and the visual pattern of a '"square',
which must stop the search when it appears. A perceptron which is capable
of distinguishing between symbols and objects, and is not subject to these

criticisms, will be considered in Section 21.3.
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21.2  Three-Layer Systems With Variable R-A Connections

In the previous examples, the existence of a bias towards one
of the two consistent response configurations when part of the &' " state is
achieved, is due to the fact that reinforcement is applied only in the presence
of the correct response. This means that whenever a corrective reinforce-

ment is applied, the reinforcement control system must first ""force' the

desired response configuration. But in a simple error-correction procedure,
as this concept has been used previously, the corrective reinforcement would
normally be applied only when the response is wrong, and this would tend to
reduce the indicated bias quite drastically. For example, in Figure 56, it
can be seen that if S, had been negatively reinforced in the presence of the
R* = (1,0) state, this negative reinforcement would tend to cancel the effect
of the S, signal. One method of eliminating this problem, which leads to a

system which appears to be generally better-behaved (on the basis of a quali-

tative examination of its properties) is to make use of adaptive back-connections,

rather than fixed-value connections, from the R to A-units.

21.2.1 Fixed Threshold Systems

The first model to be considered corresponds topologically to the
model treated in Section 21.1.1, but differs in having variable connections,

so that its symbolic diagram is of the form:
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The forward connections, from A to R-units, are assumed to follow the

usual « -system dynamics, subject to error-correction procedures. The
back-connections, however, are subject to the M -system rule which was
introduced for cross-coupled perceptrons. This means that the total value

of the set of feedback connections from each R -unit remains constant, but
that if both termini (the R-unit and the A-unit) are active in succession, the
connection value is incremented by a positive quantity, d . At the same
time, a proportional decay occurs in all active R-A connections, so that in
the absence of reinforcements, they tend to approach zero exponentially. The

e
net change in value of connection «_, attime ¢  is therefore

% A% _ Il - X )
3

(21.1)

Assuming, as before, that each stimulus persists for a time T >>1 , the
result of this rule is to raise the value of the feedback signal to all S-units

- which respond to theé current stimulus, from the active R-units, and at the

%  Note that in this equation decay occurs only when r'= | . This
means that the feedback signals from different R -units will have
approximately equal weight, regardless of the relative frequency
with which the R-units are used. The transmission delay, T ,
is included only for conformity to previous models, and plays no
essential role here.
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same time to develop inhibitory connections to the A -units which are not
currently active. The decay guarantees that the entire system will tend
towards a dynamic equilibrium, at which the expected rate of gain just

balances the rate of decay.

The effect of this system is illustrated in Figure 59, which shows
the condition after associating stimulus S, to the response (1,0)and s,
to the response (0, 1), by an error correction procedure. This corresponds

to the same conditions as Figure 56. The sets which respond when

= ’

= 'L .., are shown by the large circles. If these sets are initially
reinforced to yield the appropriate response for each stimulus, then when the
composite stimulus appears, they will try to turn on opposite responses, with
about equal strength. Such a condition, however, will be an unstable one. If

one of the sets, say S, » carries slightly greater weight than the other,

the condition illustrated in the figure will arise. With t,  on, excitatory

Figure 59 A-SETS RESPONDING TO THE COMPOSITE STIMULUS S, S,. SHADING
SHOWS ACTIVE A-SETS FOR THE RESPONSE STATE (1,0).

(COMPARE Figure 56).
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signals will be transmitted back to the §, set, and inhibitory signals to
all other A-units, including the §, set. Thus the 3,  set remains
unchanged. but the S2 set is diminished. Alternatively, if S, should

gain an advantage, the 5, set will tend to remain unchanged, and the 5,

set will be reduced.

If we assume that the universe consists of a large number of
stimuli in each class, as in Experiments 15 and 16, the set of A-units
responding to 5,  would generally not be perfectly preserved, but would
be shifted to include more units which respond to many stimuli in the §,
class, and to eliminate those units which respond only to S, . Thus
there is an additional tendency, in this system, to convert the sets of
A -units for different stimuli which have been associated to the same response,
to sets which are nearly identical. It is clear that if the procedufes of
Exper:ments 15 and 16 are carried out with this system (but with the usual
error-correction practice of reinforcing in the presence of the wrong
responses only, rather than forcing the correct response) the results predicted
in Section 2] .1 will be obtained, but with less chance of confusion or
erroneous bias due to confiicting active sets. The special property of the
variable feedback system can be characterized as a tendency to activate the
A -units responding to one of the previously trained parts of a complex

stimulus, while suppressing those A-units which respond to the remaining

parts.
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-21.2.2 Servo-Controlled Threshold Systems

In all perceptrons considered thus far, the thresholds of the
A -units have been assumed to be invariant over time. It is possible to vary
the effective threshold of an A-unit by adding an excitatory or inhibitory
component to its input signal. If this is done for all A-units in the system,
the result will be to increase or decrease the proportion of units which
respond to a given stimulus. If all signals and thresholds are quantized, then
the change in the active set will occur by sudden jumps; for example, the
addition of A § = + | will suddently activate all A-units whose o -signal
was equalto 6. -1 . Such a condit’ion would be hard to utilize effectively

‘
for the control of activity. On the other hand, if each A-unit has a threshold

0; selected at random from some continuous distribution, say a Gaussian
distribution, then there will always be some A-units whose thresholds 6;
are just below the present value of «; , and otheré whose thresholds are
just above the present value of o, . In this case, a slight change in 6
will always yield a corresponding change in the size of the active A-set, and

the size of the active set will vary in an approximately continuous fashion

as 6 is changed continuously.

Figure 60 shows a back-coupled perceptron in which the amount
of activity is continuously monitored by a servomechanism, which controls
the magnitude of the thresholds so as to keep the total activity constant.

If the fraction of active units falls below the desired level, the servo-system
transmits an excitatory signal to all A-units (equivalent to A6 < 0 ) while
if the activity rises above the desired level, an inhibitory signal (equivalent

to A6 >0 )istransmitted to all A-units.
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Figure 60 BACK-COUPLED PERCEPTRON WITH SERVO-CONTROLLED THRESHOLDS.

Such a system is likely to have advantages in many types of

perceptrons. Attached to a series-coupled perceptron, for example, the

7 -servo can guarantee that regardless of stimulus size or intensity, the
level of A-unit activity will be optimum. In a cross-coupled system, it can
be used to prevent ""blow-ups'' of activity, by providing an active mechanism
for counterbalancing the growth of excitatory weights. It is worth noting
that the - -servo can substitute for inhibitory connections from the retina
to A-units, since it generally yields the condition that if stimulus o,  is
a subset of stimulus 5, (on the retina), the corresponding active asso-
ciation set A ", will not be a subset of A 1\5,1; . In the back-coupled

system, the 6 -servo yields particularly interesting results.

Figure 61(a) shows the condition of the A-set for the same stimuli
as in Figure 59, with the R-units in the (0, 0) state, so that there is no feed-

back. The large circles show the sets which respond to 5, and S, alone,
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normalized by the action of the servomechanism. When the composite
stimulus appears, it is no longer possible for the union of the sets A(S,)
and A(Sz) to remain active, however; consequently the active sets

are reduced to those units (shown by the shaded areas of the diagram) for
which 4. = 6, + A6 . Under these conditions there is still no bias
favoring the S, response or the S, response; both sets are still in
balance, and either response might occur. As before, however, this condi-
tion tends to be unstable, and (assuming that 5, and S, have been
associated to the same response codes as previously) either (1,0) or

(0,1) will tend to occur.

Figure 61(b) shows the stable state of the system in which the
response (1,0) has becéme dominant. The servo-system is now obliged to
adjust to the eff::act of the excitatory signal fed back to the A(S,) set, and
the inhibitory signal o the A(S,) set. The result is that the active set is
nearly identical to the set which would be active for S, alone, the A(S,)
set being virtually obliterated by the combined effect of the negative
feedback and the increased threshold. It seems likely that by strengthen-
ing the excitatory feedback component ( - in the diagi‘an"xl) sufficiently,
the active set can be made to ccincide perfectly with the set responding to
S, alone. Thus the effect of selecting the (1,0) response configuration is to

enable the perceptron to respond exclusively to the §, stimuluscompletely
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Figure 61 ACTIVE A-SETS FOR COMPOSITE S, S, STIMULUS, IN SERVO-CONTROLLED
BACK-COUPLED SYSTEM. ACTIVE SETS SHOWN BY SHADED AREAS.
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free from interference by the presence of ~52 . Reversal of the R* state
would, of course, lead to a reversal of the A-state. These phenomena are
highly suggestive of reversible perspective and figure-ground reversal in
psychological experiments, where one of two ways of perceiving a complex

figure dominates to the exclusion of the other.

In a dual-modality perceptron, the above system will work in a
similar fashion, assuming that separate 8 -servos are employed for the
visual and auditory channels. Thus by giving the audio symbol for square
or triangle, top or bottom, in Experiment 16, the perceptron can be directed
to attend to oxw;e of the two objects present, and will develop an A-unit state
which corresponds closely to the state which would be expected if only the

indicated object was present in the field.

21.3 Linguistic Concept Association in a Four-Layer Perceptron

In Section 21.1.2, it was noted that although names can be
associated to objects or visual events in a three-layer back-coupled model,
so as to permit the experimenter to direct the attention of the perceptron
selectively to a named object in a compound field of stimuli, the associations
formed tend to be associations of particular stimuli, rather than universals.
It is not possible to change the name of an object {or a class of objects)
without actually undoing the previous perceptual organization of the stimulus
world for the given perceptron, and then reconstructing it in a new form.
Words and visual patterns are not distinguished, at the response level, but

are amalgamated into a common concept.
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A perceptron which is capable of first forming auditory and
visual concepts, or universals, and then associating these with one another,
and which can change its "linguistic associations' without disrupting its
perceptual organization, is illustrated in Figure 62. The system has a
visual input and an audio-input, as in Figure 58. It is also equipped with
a -~ -servo, and the back connections to the A/V, set are variable, as in

Section 21.2. For present purposes no back-connections to the A, setare

required. There are two distinct sets of R-units: one set, R’Q" , receives
its primary inputs from the . system, and can be associated to visual
stimuli. The second set, [“ , receives its primary inputs from the audio-

system, and can be trained to respond to sound patterns, or words. (By using
a spectrum of 4 for the S, to A, connections, or by means of a
cross-coupled A, -set, the system can be taught to recognize sound

sequences, so that it need not be restricted to momentary sound patterns.)

Aupio
IHPUT
(Sa)

Figure 62 A DUAL-MODALITY PERCEPTRON FOR LINGUISTIC CONCEPT ASSOCIATION.
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Thus far, we have what amounts to two mutually independent
perceptrons, one for visual stimuli, and the other for auditory stimuli.
Each of these perceptrons can form classes and generalizations. by means of
an error-correction procedure applied to the appropriate response sets.

The added feature, however, is the extra association layer, which, in this

system, comes after the R-units. The A-units in this set receive fixed

connections from the R-units (which fiorm a sort of retina for a second-order
perceptron) and send back variable-valued o -system connections to the
R-units. It is assumed that each R-unit (in both sets) receives connections
from all of the Am units, and that the values of these connections can be
corrected by an error-correction procedure, just as with the connections

from the /\“) layer.

Suppose the perceptron has already been trained to recognize
several kinds of visual objects (say squares and triangles) and has also been
trained to recognize several spoken words (''square'’ and '"triangle'") for a
variety of intonations, voice .qualities, etc. During this training, the A?
to R-unit back-connections have not been reinforced. Now let the perceptron
hear the word '"triangle', without any visual stimulus being present. The
result will be an appropriate code-configuration in the R”  units, which
will induce a characteristicy state of the Am system , identifying the
spoken word. By means of an error correction procedure, the perceptron
can now be biased to give the R” code for a triangle, and will hereafter
tend to prefer this response to any others when the word '"triangle' occurs.

Consequently, when a composite stimulus is presented, as in Experiment 16,

together with the spoken word '"'triangle', the system will tend to give the

~-495-




R” response to the triangle, and due to the feedback connections to the A,
set, and the action of the O -servo, it will selectively augment the inputs to
those A-units which respond to the triangle, while tending to suppress
activity of A-units responding to other stimuli. Since all idiosynchratic forms
of the spoken word, and all forms of the triangle -pattern, have been asso-
ciated to identical response codes, the association will generalize immediately
over both the audio class and the visual class of stimuli, without having to

train the system with multiple examples of each.

Thus the four-layer perceptron can be made to direct its
attention in response to spoken commands in much the same way as the
previous models, but without requiring a modification of the A-R connections,
or '"perceptual organization' of the network, in forming the linguistic asso-
ciation. By a similar procedure, the A% to R™ connections can be
reinforced in the presence of a visual pattern to create a bias, or ""expentancy',
favoring the perception of the word corresponding to the perceived object. By ‘

replacing the & -system back-connections from AY

to the R-units with
[’ -system connections (as in Equation 21.1)the association can be made
to occur in a relatively spontaneous fashion, by presenting the visual image
together with its spoken name. The result will be a reinforcement of the
connections from the A(z) set which responds jointly to the visual and
auditory codes; since this set will have many units in common with the

separate audio and visual AD sets, the reinforcement will tend to

generalize, to yield the desired result.
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This system can be used for the problem of searching for a
named object which is not currently present in the visual field. For this
task, one must assume that the [‘\’“:‘ units are of a '"flip-fiop" variety,
which tend to go on and stay on when they receive a sufficient input signal,

until they are specifically cut off by a strong inhibitory signal. The system

is taught to initiate an automatically controlled search or scan procedure in

response to the spoken word '"search'. It is also trained (at the A(z) level)
to turn off the search response whenever a coincidence occurs between a
spoken name-code, and the visual object-code, but to leave the search-state
alone when ether the name or object, but not both, are present. Thus, given
the command "Search for square', the word "search' initiates the search
activity, and the word ""'square' sets the system to anticipate a square pattern.
When a square appears in the field, the Au) set corresponding to the com-
bined object-code and word-code is activated, and transmits a strong inhi-
bitory signal to the search response, turning it off. It would be possible to go
a step farther, by training the perceptron (which has now isolated the set of
A,. units responding to the square) to continuously center the image of the
square in the retina, using two continuous R-units to measure % and
displacements of the image frdm the center of the field (as in Section 10.2).
Such a system, having found a moving stimulus, will track it and tend to

keep it centered without being confused by the presence of extraneous objects

in the field.
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PROGRAM-LEARNING PERCEPTRONS

[\
NN

In the last chapter, we have seen that a back-coupled perceptron
can be made to attend selectively to parts of a complex field, suppressing

A -unit activity corresponding to objects other than the one attended to. In

the last few paragraphs, it was also shown that such a perceptron can be
made to anticipate decisions which are to be made at a future time, and
execute them when the appropriate perceptual conditions are met. This
lays the basis for the learning of sequential programs of responses in

perceptrons.

Programmed activity is, of course, of supreme importance in
carrying out logical sequences or algorithms, as in a digital computer. It
also appears to provide a possible basis for the recognition of highly complex
stimulus configurations, which depend on relations of simpler parts, rather
than a fixed overall shape. The recognition of a human form, or an animal,
is of this variety. It is also possible that the recognition of abstract topo-
logical relations -- a problem which has hitherto defied all perceptrons
analyzed -- can be performed by means of a suitable programmed sequence
of observations. This writer has become increasingly convinced that a
passive filter-type system (such as a simple perceptron) cannot be designed
which will economically recognize topological abstractions and relations
such as "A and B are disjoint" or "A is inside B'" or "A is a closed curve''.
On the other hand, a perceptron which can attend selectively to part of the
stimulus pattern at a time, and carry out a sequence of observations under

program-control, seems to offer a potential solution to this problem.
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22.1 Learning Fixed Response Sequences

A perceptron of the back-coupled or cross-coupled variety can
be taught to execute a fixed, stereotyped sequence of responses without
introducing any new features in the system. If the sequence Rl*, R':, R;
is required, for example, when stinulus S/ occurs, but the inverse
sequence (R’;) Ry, P,*} when S, occurs, it is only necessary to
associate the required responses to the succession of A-states which
follow the stimulus in the cross-coupled system, or to the A-states which
result from the interaction of the retinal input and the R-A feedback, in the
back-coupied system. Of these two approaches, the cross-coupled system is
more versatile, since it can be triggered by a momentary stimulus, and will
not return to an identical state if the séme response condition should occur
at different points in the sequence. The cross-coupled system, however,
requires that the response sequence occur with exact tirning of each element.
If the triggering or execution of each response takes an indeterminate amount
of time, then a closed-loop system of the type shown in Figure 63 would be
more appropriate. This system (which is also applicable to the recognition
of strings of sensory events, such as words or speech sounds, where each
elernent of the sequence is of indeterminate duration) employs an A" system
with units which tend to lock on once they are activated, unless specifically
triggered. These units are of the same variety as the "flip-flop R-units"

A(2)

employed in the PQ set in Section 21.3. The A set is cross-coupled,

. . . . . . ()
with fixed connections, and feeds back (with fixed connections) to the A

set.

-500 -




Al2)
(CROSS-
COUPLED)

0af

Figure 63 FOUR-LAYER PERCEPTRON FOR RECOGNITION AND CONTROL OF R -SEQUENCES
WITH ELEMENTS OF INDETERMINATE DURATION.

When a response occurs in the R-set; it immediately triggers
the A system to assume some characteristic state. The parameters
of the cross-coupling at the A(z) level can be so picked (e.g.., by making
all interconnections inhibitory) that the system will immediately assume a
steady state, which will be held until some subsequent response occurs.
When the second response of the sequence occurs, it finds the effective
thresholds of the A~ units modified by the cross-coupling signals from

o . .
state which occutis

the units which are already on. Consequently, the A
will depend not only on the new response, but also on the previous A"’

state. Unlike the previous cross-coupled systems, however, it does not
depend on the time-lapse since the previous input, since the A state

has held steady over the interval.
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By means of the feedback to the A(/) set, the Au) state
(and consequently the response sequence) can be made to modify the response
of the A" system to the present stimulus. Thus a distinct succession
of responses can be associated to the stimulus, each new A‘“ state
signifying the joint information that the stimulus is present, and that a
particular succession of responses has occurred in the past. To terminate
such a sequence, it is possible to assume that one of the R-units has inhibi-
tory connections to all Am units, so that when the end of the sequence
is recognized, the AP system can be reset to its inactive state, by

turning on this response.

22.2 Conditional Response Sequences

In the last section, the response sequences learned by the
perceptron were assumed to be of a fixed, stereotyped variety, such as
the utterance of a given word or phrase, or the execution of a particular
sequence of movements. Of more general interest, is the possibility of
conditional response sequences, where the execution of the next step

depends upon the realization of a set of conditions at the present time.

In a limited sense, we have already demonstrated the possibi-
lity of conditional responses in the perceptron of Figure 63, where the
next response depends not only upon the preceding R-sequence, but also
upon the continuation of the initiating stimulus. A more interesting case,
however, would be one in which the next response depends upon the recogni-
tion of some condition which results from the preceding activity of the

perceptron itself. For example,if the perceptron is equipped with a move-
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able appendage by means of which it can apply pressure to external objects,
we might ask it to push aside any object placed in front of it. Such objects
might have their movement blocked, either to the right of to the left, in
which case the perceptron might first bring its "pushing arm' into contact
with the left side of an object and try pushing to the right, but if it finds
that the object remains stationary, it must reverse the position of its arm,

and push to the left.

Such a decision program still seems to be within the capability
of a perceptron of the type just described. It must recognize (through its
visual inputs) the conditions "no object present'’, object present to right of
arm location', "object present to left of arm location', arm in contact with
left side but object stationary', "arm in contact with left side and object
moving', etc. The recognition of the contact conditions might be facilitated
by the inclusio'ﬁ of pressure transducers on the arm, providing an auxiliary
sensory input to the association system. An appropriate response sequence
must then be associated to each of these conditions. For example, if the
condition arm in contact with left side but object stationary" is recognized,

the response sequence might be

1. Retract arm
2" Shift arm position to right
Gl Extend arm

This would then yield the condition ""object present to left of arm location',

for which the response would be

l. Shift arm to left until it contacts object

2y Apply pressure
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The conditions of "moving" and "stationary' objects can, of course, be
recognized by a perceptron with time delays from the retina to the AY
units, so that there is nothing in the above description which cannot be done,

in principie, by perceptrons which have already been analyzed.

2128 Programs Requiring Data Storage

In all of the sequential programs considered above, the next
step has been determined entirely by the conditions at the previous step,
and a knowledge of how many steps have already occurred in the current
sequence. More elaborate programs require a conditional response based on
information which was available several steps previously, but is no longer
predent in the sensory input. The perceptrons considered so far can solve
such problems only by anticipating all possible sequences of conditions,
and learning a unique response sequence for each special case. This rapidly
becomes impractical,as the sequences become more involved. An example
of such a problem is counting. In counting from zero upwards, we first
produce a sequence of single digits, from one‘through nine; we then add a
second digit (a one) and reset the low order digit to zero. The one inszcond
place is held fixed, while the low order digits are recycled, and is then
changed to two, and so forth. At an advanced stage in this procedure, we
may be holding three or four high-order digits "in memory' while modifying
the low-order digits To perform such a program expeditiously, an internal
storage mechanism is required, which can be set to hold a given item of
information and read out or altered whenever required. Such a memory
mechanism is much more like a conventional digital computer memory than

anything yet encountered in perceptron theory.
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While it is fairly easy to contrive systems which employ rigidly de-
termined gating mechanisms and more-or-less conventional computer memory
logic to provide a temporary storage device for a perceptron, no realy satis-
fying solution has been found to date. A biological system undoubtedly employs
something more subtle than a coded address system which transmits its
stored information on command, but the similarity in logical requirements
nonetheless suggests that there might be a similarity in structure at this
particular point. It should be remembered, however, that human ability to
perform complex algorithms without extensive practice and learning time
does not begin to approach that of a digital computer. The human computer
also tends to rely heavily on such external aids as pencil and paper to augment
his memory for relevant data, and with the aid of an external transcription of
its outputs, a perceptron can also be made to perform rather elaborate logic

(in the manner of section 22.2).

Some possible cues as to the nature of temporary data storage in
the human brain come from introspective observations of recall of strings of
digits, words, or melodies, and such excrcises as attemnpting to count in
binary up to the point where one loses track of the number on which one is
operating. In all of these cases, recall is helped by rhythmic grouping of
elements, and by visualization or auditory imagery of the elements in a
continuously recurrent sequence. It seems likely that an active memory,
such as a reverberating loop system, which continuously rewrites itself

on every rehearsal of the stored information, is involved.
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22.4 Attention-Scanning and Perception of Complex Objects

The preceding sections have dealt with the phenomena of
program learning with respect to response sequences. A capability for
program learning is also useful for the direction of attention over a sensory
field, and the perception of a complex pattern or object by noting its parts
and the relations between them. The possibility of directing attention
selectively to part of the visual field was already observed in the last
chapter. A program-controlled perceptron could, therefore, be taught to
direct its attention successively to different parts of the field in some syste-
rnatic order, e.g., to scan from left to right, or top to bottom. It is also
plausible (although it remains to be demonstrated) that a back-coupled
perceptron can be taught to shift its field of attention along a contour, or
edge of a figure, so that the association set, at any one time, responds
only to part of the contour. Such a system, by starting at one point on a curve
and following it in one direction, could determine whether the curve is closed
or open by indicating whether the scan process returns to its starting point

without having lost the contour at any time.

In the recognition of 2 complex structured object, such as a
man (regardless of posture, angle of view, etc.) a program of observations
might note significant parts and the transitions between them. There should,
for example, be a head joined to the shoulders, and by following a path from
one of the hands, the system should successively come to a forearm, shoulder,
and torso. The reader may recognize a similarity between this suggestion
and Hebb's concept of a ""phase sequence' (Ref. 33). The phase sequence

consists of a progression of cell-assemblies, each of which represents some




elementary perceptual fragment, the entire sequence representing a
p;rception of a complex stimulus or experience. In the perceptron, however,
the progression of states is assumed to be under the control of a learned
program, which directs the attention of the system in such a way as to make
first one set of A-units, then another set achieve dominance, by the
mechanisms described in Chapter 21. A sequence-recognizing system, such
as the five-layer perceptron shown in Figure 64, would be required for the
direction of the scanning process and for the recognition of the total configu-
ration from its parts. This system employs an A% layer of the same type
as in Figure 63 (cross-coupled, with fixed interconnections, and A -units
which hold their state until triggered by a sufficiently strong signal to change).
The A(z) get in this model, however, has variable-valued connections

both to a new Rm set, wl‘xich can learn to recognize complex patterns from

sequences of parts, and also back to the RV units, so that the system can

be taught to direct its attention in a systematic manner to look for anticipated

parts of the complex.

A A(2) .
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Figure 64 FIVE-LAYER PERCEPTRON FOR RECOGNITION CF COMPLEX PATTERNS BY
ATTENTION SCANNING PROGRAMS. (BROKEN ARROWS INDICATE
VARIABLE CONNECTIONS).
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22.5 Recognition of Abstract Relations

It is apparent that the perceptrons proposed above are already
stretching the limits of what has been firmly established analytically and
experimentally. While there is good reason to think that the proposed
systems would work in principle, they are highly speculative, and we are
far from being able to describe their performance in quantitative terms.
Nonetheless, one further venture in extrapolation seems to be of interest:
As was previously noted, the recognition of abstract topological relations
(or metric relations, for that matter) cannot be performed economically
by a perceptron which is required to grasp the relation instantaneously from
a complex pattern. The relation "A is inside of B'", for example, would
require that the system be trained with all possible cases of "A inside B"
and "A outside B'", even after it has been taught to identify patterns "A"
and "B' correctly. It seems more likely that a program-controlled perceptron,
having been taught to recognize patterns A and B, can determine whether A

is inside of B by means of a directed scanning process.

Suppose we show the perceptron a complex field, containing a
circle and a square, both of which it has previously been taught to identify,
and we ask the system to indicate whether the circle is inside or outside ‘
the square. This question could be answered by means of two attention
sweeps, beginning at the circle and first sweeping to the right, then returning
to the circle and sweeping to the left. If an edge of the square is encountered
on one of the two dweeps but not on the other, then the circle is "outside"

the square; if an edge is encountered both to the right of the circle and to the
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left, the circle is "inside'' the square. A somewhat more elaborate
program would determine whether a known figure {(e.g., a square or

triangle) is inside or outside of an arbitrary closed curve.
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