Home
Reading 07: k-Nearest Neighbors, Support Vector Machines, and Clustering
SVMs and KNNs
¶
Readings
•
Slides
•
PML - Sections 16.1, 17.3
•
ISLP - Sections 3.5, 4.7.6 and Chapter 9
•
UML - Chapters 15, 19
•
KNN (HdM)
•
SVMs (HdM)
•
An Idiot's Guide to Support Vector Machines
Videos
•
Pantopto
•
sp25 Panopto
•
Harvard CS50 (0:00 - 12:30 and 33:29 - 39:41)
•
MIT 6.034 SVMs
•
MIT 6.034 KNNs
•
Cornell CS4780 KNNs
•
Cornell CS4780 SVMs 1
•
Cornell CS4780 SVMs 2
SVMs (StatQuest)
KNN (StatQuest)
Notebooks
Blogposts
•
Kernel Methods (Raschka)
•
Machine Learning Algorithms Explained: Support Vector Machine
•
K-Nearest Neighbor (KNN) Explained
Papers
•
(1963) A Note on One Class of Perceptrons (Vapnik and Chervonenkis)
•
(1992) A Training Algorithm for Optimal Margin Classifiers (Boser et al.)
•
(1995) Support-Vector Networks (Cortes and Vapnik)
Clustering
¶
Readings
•
Slides
•
FCA - Section 10.3
•
PML - Chapter 21
•
ISLP - Section 12.4
•
UML - Chapter 22
Videos
•
sp25 Panopto
•
Hierarchical (StatQuest)
•
K-Means (StatQuest)
Notebooks
•
Clustering Visualizations
•
GMM Clustering
•
Clustering (rasbt)
Blogposts
Clustering: How It Works (In Plain English!)
Quiz
¶
Loading…